BACKGROUNDChronic obstructive pulmonary disease (COPD) is thought to result from an accelerated decline in forced expiratory volume in 1 second (FEV 1 ) over time. Yet it is possible that a normal decline in FEV 1 could also lead to COPD in persons whose maximally attained FEV 1 is less than population norms. METHODSWe stratified participants in three independent cohorts (the Framingham Offspring Cohort, the Copenhagen City Heart Study, and the Lovelace Smokers Cohort) according to lung function (FEV 1 ≥80% or <80% of the predicted value) at cohort inception (mean age of patients, approximately 40 years) and the presence or absence of COPD at the last study visit. We then determined the rate of decline in FEV 1 over time among the participants according to their FEV 1 at cohort inception and COPD status at study end. RESULTSAmong 657 persons who had an FEV 1 of less than 80% of the predicted value before 40 years of age, 174 (26%) had COPD after 22 years of observation, whereas among 2207 persons who had a baseline FEV 1 of at least 80% of the predicted value before 40 years of age, 158 (7%) had COPD after 22 years of observation (P<0.001). Approximately half the 332 persons with COPD at the end of the observation period had had a normal FEV 1 before 40 years of age and had a rapid decline in FEV 1 thereafter, with a mean (±SD) decline of 53±21 ml per year. The remaining half had had a low FEV 1 in early adulthood and a subsequent mean decline in FEV 1 of 27±18 ml per year (P<0.001), despite similar smoking exposure. CONCLUSIONSOur study suggests that low FEV 1 in early adulthood is important in the genesis of COPD and that accelerated decline in FEV 1 is not an obligate feature of COPD. (Funded by an unrestricted grant from GlaxoSmithKline and others.) a bs tr ac t
In a sample of the general population, people who identified themselves as having asthma had substantially greater declines in FEV1 over time than those who did not.
Summary Height is a highly heritable, classic polygenic trait with ∼700 common associated variants identified so far through genome-wide association studies. Here, we report 83 height-associated coding variants with lower minor allele frequencies (range of 0.1-4.8%) and effects of up to 2 cm/allele (e.g. in IHH, STC2, AR and CRISPLD2), >10 times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (+1-2 cm/allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates (e.g. ADAMTS3, IL11RA, NOX4) and pathways (e.g. proteoglycan/glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate to large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
We screened DNA sequence variants on an exome-focused genotyping array in >300,000 participants with replication in >280,000 participants and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice revealed lipid changes consistent with the human data. We utilized mapped variants to address four clinically relevant questions and found the following: (1) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease; (2) outside of the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (3) only some mechanisms of lowering LDL-C seemed to increase risk for type 2 diabetes; and (4) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (e.g., TM6SF2, PNPLA3) tracked with higher liver fat, higher risk for type 2 diabetes, and lower risk for coronary artery disease whereas TG-lowering alleles involved in peripheral lipolysis (e.g., LPL, ANGPTL4) had no effect on liver fat but lowered risks for both type 2 diabetes and coronary artery disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.