SUMMARY The importance of the p53 protein in the cellular response to DNA damage is well known, but its function during steady-state hematopoiesis has not been established. We have defined a critical role of p53 in regulating hematopoietic stem cell quiescence, especially in promoting the enhanced quiescence seen in HSCs that lack the MEF/ELF4 transcription factor. Transcription profiling of HSCs isolated from wild type and p53 null mice identified Gfi-1 and Necdin as p53 target genes and using lentiviral vectors to upregulate or knockdown the expression of these genes, we show their importance in regulating HSC quiescence. Establishing the role of p53 (and its target genes) in controlling the cell cycle entry of HSCs may lead to therapeutic strategies capable of eliminating quiescent cancer (stem) cells.
The telomerase complex is responsible for telomere maintenance and represents a promising neoplasia therapeutic target. In order to determine whether G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), might have effects on telomere dynamics and to evaluate the clinical utility, we assessed the effects of telomestatin on BCR-ABL-positive human leukemia cells. We found that treatment with telomestatin reproducibly inhibited telomerase activity in the BCR-ABLpositive leukemic cell lines OM9;22 and K562, resulting in telomere shortening. Inhibition of telomerase activity by telomestatin disrupts telomere maintenance and ultimately results in telomere dysfunction. Telomestatin completely suppressed the plating efficiency of K562 cells at 1 lm; however, telomestatin had less effects on BFU-Es and CFU-GMs colony formation from normal bone marrow CD34-positive cells. Enhanced chemosensitivity toward imatinib and chemotherapeutic agents was also observed in telomestatin-treated K562 cells. Further, the combination of telomestatin plus imatinib more effectively inhibited hematopoietic colony formation by primary human chronic myelogenous leukemia cells. Last, telomestatin induced the activation of ATM and Chk2, and subsequently increased the expression of p21 CIP1 and p27 KIP1 . These results demonstrate that telomere dysfunction induced by telomestatin activates the ATM-dependent DNA damage response. We conclude that telomerase inhibitors combined with the use of imatinib and other chemotherapeutic agents may be very useful for the treatment of human leukemia.
EZH2, a catalytic component of the polycomb repressive complex 2, trimethylates histone H3 at lysine 27 (H3K27) to repress the transcription of target genes. Although EZH2 is overexpressed in various cancers, including some hematologic malignancies, the role of EZH2 in acute myeloid leukemia (AML) has yet to be examined in vivo. In the present study, we transformed granulocyte macrophage progenitors from Cre-ERT;Ezh2 flox/flox mice with the MLL-AF9 leukemic fusion gene to analyze the function of Ezh2 in AML.Deletion of Ezh2 in transformed granulocyte macrophage progenitors compromised growth severely in vitro and attenuated the progression of AML significantly in vivo. Ezh2-deficient leukemic cells developed into a chronic myelomonocytic leukemia-like disease with a lower frequency of leukemia-initiating cells compared with the control. Chromatin immunoprecipitation followed by sequencing revealed a significant reduction in the levels of trimethylation at H3K27 in Ezh2-deficient leukemic cells, not only at Cdkn2a, a known major target of Ezh2, but also at a cohort of genes relevant to the developmental and differentiation processes. Overexpression of Egr1, one of the derepressed genes in Ezh2-deficient leukemic cells, promoted the differentiation of AML cells profoundly. Our findings suggest that Ezh2 inhibits differentiation programs in leukemic stem cells, thereby augmenting their leukemogenic activity. IntroductionThe polycomb group (PcG) of proteins function in gene silencing through histone modifications, forming the chromatin-associated multiprotein complexes known as polycomb repressive complex 1 (PRC1) and PRC2. These 2 complexes work together to maintain heritable chromatin modifications, mediating transcriptional repression of target genes, 1 and have been characterized as general regulators of stem cells.Among the PcG proteins, BMI1, a core component of PRC1, plays an essential role in the maintenance of the self-renewal ability of hematopoietic stem cells (HSCs), at least partially by silencing the CDKN2A (INK4A/ARF) locus. 2-5 BMI1 also maintains the multipotency of HSCs by keeping developmental regulator gene promoters poised for activation. 6 EZH2 is a catalytic component of PRC2 that trimethylates histone H3 at lysine 27 (H3K27) to repress its target genes transcriptionally. We recently reported that Ezh2 is essential for fetal but not adult HSCs. 7 Ezh2-deficient embryos die of anemia because of insufficient expansion of hematopoietic stem/progenitor cells and defective erythropoiesis in the fetal liver. Deletion of Ezh2 in adult BM perturbs lymphopoiesis but does not otherwise affect hematopoiesis. 7-9 Ezh1 has been shown to compensate for Ezh2 deficiency in mouse embryonic stem cells, 10 and may also act in a compensatory fashion in Ezh2-deficient BM HSCs. 7 In contrast, overexpression of Ezh2 in HSCs reportedly prevents exhaustion of the long-term repopulating potential of HSCs during repeated serial transplantation. 11PcG genes have also been linked to cancer. 12-14 Aberrant regulation of E...
Loss-of-function mutations of EZH2, a catalytic component of polycomb repressive complex 2 (PRC2), are observed in B10% of patients with myelodysplastic syndrome (MDS), but are rare in acute myeloid leukaemia (AML). Recent studies have shown that EZH2 mutations are often associated with RUNX1 mutations in MDS patients, although its pathological function remains to be addressed. Here we establish an MDS mouse model by transducing a RUNX1S291fs mutant into hematopoietic stem cells and subsequently deleting Ezh2. Ezh2 loss significantly promotes RUNX1S291fs-induced MDS. Despite their compromised proliferative capacity of RUNX1S291fs/Ezh2-null MDS cells, MDS bone marrow impairs normal hematopoietic cells via selectively activating inflammatory cytokine responses, thereby allowing propagation of MDS clones. In contrast, loss of Ezh2 prevents the transformation of AML via PRC1-mediated repression of Hoxa9. These findings provide a comprehensive picture of how Ezh2 loss collaborates with RUNX1 mutants in the pathogenesis of MDS in both cell autonomous and non-autonomous manners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.