Model Predictive Control (MPC) for {networked, cyber-physical, multi-agent} systems requires numerical methods to solve optimal control problems while meeting communication and real-time requirements. This paper presents an introduction on six distributed optimization algorithms and compares their properties in the context of distributed MPC for linear systems with convex quadratic objectives and polytopic constraints. In particular, dual decomposition, the alternating direction method of multipliers, a distributed active set method, an essentially decentralized interior point method, and Jacobi iterations are discussed. Numerical examples illustrate the challenges, the prospect, and the limits of distributed MPC with inexact solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.