Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.
A challenge in the clinical adoption of cell-free DNA (cfDNA) liquid biopsies for cancer care is their high cost compared to potential reimbursement. The most common approach used in liquid biopsies to achieve high specificity detection of circulating tumor DNA (ctDNA) among a large background of normal cfDNA is to attach molecular barcodes to each DNA template, amplify it, and then sequence it many times to reach a low-error consensus. In applications where the highest possible specificity is required, error rate can be lowered further by independently detecting the sequences of both strands of the starting cfDNA. While effective in error reduction, the additional sequencing redundancy required by such barcoding methods can increase the cost of sequencing up to 100-fold over standard next-generation sequencing (NGS) of equivalent depth. We present a novel library construction and analysis method for NGS that achieves comparable performance to the best barcoding methods, but without the increase in sequencing and subsequent sequencing cost. Named Proximity-Sequencing (Pro-Seq), the method merges multiple copies of each template into a single sequencing read by physically linking the molecular copies so they seed a single sequencing cluster. Since multiple DNA copies of the same template are compared for consensus within the same cluster, sequencing accuracy is improved without the use of redundant reads. Additionally, it is possible to represent both senses of the starting duplex in a single cluster. The resulting workflow is simple, and can be completed by a single technician in a work day with minimal hands on time. Using both cfDNA and cell line DNA, we report the average per-mutation detection threshold and per-base analytical specificity to be 0.003% and >99.9997% respectively, demonstrating that Pro-Seq is among the highest performing liquid biopsy technologies in terms of both sensitivity and specificity, but with greatly reduced sequencing costs compared to existing methods of comparable accuracy.
Targeted Next Generation Sequencing (NGS) is being adopted increasingly broadly in many research, commercial and clinical settings. Currently used target capture methods, however, typically require complex and lengthy (sometimes multi-day) workflows that complicates their use in certain applications. In addition, small panels for high sequencing depth applications such as liquid biopsy typically have low on-target rates, resulting in unnecessarily high sequencing cost. We have developed a novel targeted sequencing library preparation method, named Linked Target Capture (LTC), which replaces typical multi-day target capture workflows with a single-day, combined ‘target-capture-PCR’ workflow. This approach uses physically linked capture probes and PCR primers and is expected to work with panel sizes from 100 bp to >10 Mbp. It reduces the time and complexity of the capture workflow, eliminates long hybridization and wash steps and enables rapid library construction and target capture. High on-target read fractions are achievable due to repeated sequence selection in the target-capture-PCR step, thus lowering sequencing cost. We have demonstrated this technology on sample types including cell-free DNA (cfDNA) and formalin-fixed, paraffin-embedded (FFPE) derived DNA, capturing a 35-gene pan-cancer panel, and therein detecting single nucleotide variants, copy number variants, insertions, deletions and gene fusions. With the integration of unique molecular identifiers (UMIs), variants as low as 0.25% abundance were detected, limited by input mass and sequencing depth. Additionally, sequencing libraries were prepared in less than eight hours from extracted DNA to loaded sequencer, demonstrating that LTC holds promise as a broadly applicable tool for rapid, cost-effective and high performance targeted sequencing.
Targeted Next Generation Sequencing (NGS) is being adopted increasingly broadly in many research, commercial and clinical settings. Currently used target capture methods, however, typically require complex and lengthy (sometimes multi-day) workflows that complicates their use in certain applications. In addition, small panels for high sequencing depth applications such as liquid biopsy typically have low on-target rates, resulting in unnecessarily high sequencing cost.We have developed a novel targeted sequencing library preparation method, named Linked Target Capture (LTC), which replaces typical multi-day target capture workflows with a single-day, combined ‘target-capture-PCR’ workflow. This approach uses physically linked capture probes and PCR primers and is expected to work with panel sizes from 100 bp to >10 Mbp. It reduces the time and complexity of the capture workflow, eliminates long hybridization and wash steps and enables rapid library construction and target capture. High on-target read fractions are achievable due to repeated sequence selection in the target-capture-PCR step, thus lowering sequencing cost.We have demonstrated this technology on sample types including cell-free DNA (cfDNA) and formalin-fixed, paraffin-embedded (FFPE) derived DNA, capturing a 35-gene pan-cancer panel, and therein detecting single nucleotide variants, copy number variants, insertions, deletions and gene fusions. With the integration of unique molecular identifiers (UMIs), variants as low as 0.25% abundance were detected, limited by input mass and sequencing depth. Additionally, sequencing libraries were prepared in less than eight hours from extracted DNA to loaded sequencer, demonstrating that LTC holds promise as a broadly applicable tool for rapid, cost-effective and high performance targeted sequencing.
13A challenge in the clinical adoption of cell-free DNA (cfDNA) liquid biopsies for cancer 14 care is their high cost compared to potential reimbursement. The most common approach 15 used in liquid biopsies to achieve high specificity detection of circulating tumor DNA 16 (ctDNA) among a large background of normal cfDNA is to attach molecular barcodes to 17 each DNA template, amplify it, and then sequence it many times to reach a low-error 18 consensus. In applications where the highest possible specificity is required, error rate can 19 be lowered further by independently detecting the sequences of both strands of the starting 20 cfDNA. While effective in error reduction, the additional sequencing redundancy required 21 by such barcoding methods can increase the cost of sequencing up to 100-fold over 22 standard next-generation sequencing (NGS) of equivalent depth. 23We present a novel library construction and analysis method for NGS that achieves 24 comparable performance to the best barcoding methods, but without the increase in 25 sequencing and subsequent sequencing cost. Named Proximity-Sequencing (Pro-Seq), the 26 method merges multiple copies of each template into a single sequencing read by 27 physically linking the molecular copies so they seed a single sequencing cluster. Since 28 multiple DNA copies of the same template are compared for consensus within the same 29 cluster, sequencing accuracy is improved without the use of redundant reads. Additionally, 30 it is possible to represent both senses of the starting duplex in a single cluster. The resulting 31 workflow is simple, and can be completed by a single technician in a work day with 32 minimal hands on time. 33Using both cfDNA and cell line DNA, we report the average per-mutation detection 34 threshold and per-base analytical specificity to be 0.003% and >99.9997% respectively, 35 demonstrating that Pro-Seq is among the highest performing liquid biopsy technologies in 36 terms of both sensitivity and specificity, but with greatly reduced sequencing costs 37 compared to existing methods of comparable accuracy. 38
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.