[1] By measuring relative earthquake arrival times using waveform cross correlation and locating earthquakes using the double difference technique, we are able to reduce hypocentral errors by 1 to 2 orders of magnitude over routine locations for nearly 8000 events along a 35-km section of the Calaveras Fault. This represents $92% of all seismicity since 1984 and includes the rupture zone of the M 6.2 1984 Morgan Hill, California, earthquake. The relocated seismicity forms highly organized structures that were previously obscured by location errors. There are abundant repeating earthquake sequences as well as linear clusters of earthquakes. Large voids in seismicity appear with dimensions of kilometers that have been aseismic over the 30-year time interval, suggesting that these portions of the fault are either locked or creeping. The area of greatest slip in the Morgan Hill main shock coincides with the most prominent of these voids, suggesting that this part of the fault may be locked between large earthquakes. We find that the Calaveras Fault at depth is extremely thin, with an average upper bound on fault zone width of 75 m. Given the location error, however, this width is not resolvably different from zero. The relocations reveal active secondary faults, which we use to solve for the stress field in the immediate vicinity of the Calaveras Fault. We find that the maximum compressive stress is at a high angle, only 13°from the fault normal, supporting previous interpretations that this fault is weak.
Earthquake location using relative arrival time measurements can lead to dramatically reduced location errors and a view of fault-zone processes with unprecedented detail. There are two principal reasons why this approach reduces location errors. The first is that the use of differenced arrival times to solve for the vector separation of earthquakes removes from the earthquake location problem much of the error due to unmodeled velocity structure. The second reason, on which we focus in this article, is that waveform cross correlation can substantially reduce measurement error. While cross correlation has long been used to determine relative arrival times with subsample precision, we extend correlation measurements to less similar waveforms, and we introduce a general quantitative means to assess when correlation data provide an improvement over catalog phase picks. We apply the technique to local earthquake data from the Calaveras Fault in northern California. Tests for an example streak of 243 earthquakes demonstrate that relative arrival times with normalized cross correlation coefficients as low as ϳ70%, interevent separation distances as large as to 2 km, and magnitudes up to 3.5 as recorded on the Northern California Seismic Network are more precise than relative arrival times determined from catalog phase data. Also discussed are improvements made to the correlation technique itself. We find that for large time offsets, our implementation of timedomain cross correlation is often more robust and that it recovers more observations than the cross spectral approach. Longer time windows give better results than shorter ones. Finally, we explain how thresholds and empirical weighting functions may be derived to optimize the location procedure for any given region of interest, taking advantage of the respective strengths of diverse correlation and catalog phase data on different length scales.
The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s1071 2-018-9472-4) contains supplementary material, which is available to authorized users. operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.