A chip-based PCR device is presented that is capable of rapid temperature ramping and handling sample volumes in the microliter range. The PCR chip comprises a microchannel thermally connected to three temperature zones. Inside this microchannel, the PCR sample plug is driven and precisely positioned by a ferrofluidic actuator for more than 40 cycles within 5 min. Computer simulations predict that the sample plugs are thermally equilibrated on a time scale of some 10 ms when transported to a different temperature zone. Hence, the thermal limitations on the cycle speed of the system are considerably reduced compared with conventional cyclers. The system was developed on a modular platform suitable for handling further microfluidic tasks such as DNA extraction and preparation of the PCR mix. Thus, the aspired chip-based platform represents not only a PCR system but a complete analysis system, from the injection of a patient's blood sample to its final appraisal.
We present a detailed study of the diffusive transport of proteins across a fluid phase boundary within aqueous two-phase systems. The aim of the work is to investigate whether local effects at the phase boundary cause a retardation of the diffusive transport between the phases. Possible modifications of interfacial mass transfer could be due to protein adsorption at the phase boundary or local electric fields from electric double layers. Experiments with a microfluidic system have been performed in which protein diffusion (bovine serum albumin and ovalbumin) within a bilaminated configuration of two phases containing polyethylene glycol and dextran is analyzed. A one-dimensional model incorporating phase-specific diffusion constants and the difference in chemical potential between the phases has been formulated. A comparison of experimental and simulation data shows a good overall agreement and suggests that a potential local influence of the phase boundary on protein transport is insignificant for the systems under investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.