We introduce a framework in noncommutative geometry consisting of a * -algebra, a bimodule endowed with a derivation ("1-forms") and a Hermitian structure (a "noncommutative Kähler form"), and a cyclic 1-cochain whose coboundary is determined by the previous structures. This data leads to moment map equations on the space of connections on arbitrary finitely-generated projective Hermitian module. As particular cases, we obtain a large class of equations in algebra (King's equations for representations of quivers, including ADHM equations), in classical gauge theory (Hermitian Yang-Mills equations, Hitchin equations, Bogomolny and Nahm equations, etc.), as well as in noncommutative gauge theory by Connes, Douglas and Schwarz. We also discuss Nekrasov's beautiful proposal for re-interpreting noncommutative instantons on C n R 2n as an infinite-dimensional solution of King's equationwhere H is a Hilbert space completion of a finitely-generated C[T 1 , . . . , Tn]-module (e.g. an ideal of finite codimension).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.