Ru(II) catalyzed tandem synthesis of α-branched methylated ketones via multicomponent reactions following the hydrogen borrowing process is described. This nonphosphine-based air and moisture stable catalyst efficiently produced various methylated ketones using methanol as a methylating agent. This system was found to be highly effective in three-component coupling between methanol, primary alcohols, and methyl ketones. A proposed catalytic cycle for the α-methylation is supported by DFT calculations as well as kinetic experiments.
A Ru(II) NHC complex (loading down to 0.001 mol%) catalyzed cross coupling of a broad range of aromatic, aliphatic and heterocyclic alcohols is reported. This protocol also functioned efficiently under solvent‐free conditions. Remarkably, this catalytic system disclosed so far the highest TON of 288000 for the cross coupling of alcohols. Notably, this methodology was successfully applied for the one‐pot synthesis of a range of flavan derivatives. A detailed DFT studies and kinetic experiments were performed to understand the reaction mechanism as well as the high reactivity of this catalytic system.magnified image
A straightforward synthetic route toward indole-fused heteroacenes was developed. The strategy is composed of a one-pot process starting with a multicomponent reaction of cyclohexanone, primary amine and N-tosyl-3-nitroindole followed by an oxidation step. The one-pot approach was found to be general, affording both symmetric and nonsymmetric indolo[3,2-b]indoles in good yields. The strategy was also utilized for accessing 5-ring fused benzo[g]indolo[3,2-b]indole. We could extend the methodology for the synthesis of benzothieno[3,2-b]indoles starting from 3-nitrobenzothiophene. The importance of the developed method was exemplified by performing the reaction sequence on gram scale and also by the synthetic transformations of indolo[3,2-b]indoles. In addition, the change in photophysical properties with extension of conjugation of the synthesized heteroacenes was studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.