Developing Named Entity Recognition (NER) systems for Indian languages has been a long-standing challenge, mainly owing to the requirement of a large amount of annotated clean training instances. This paper proposes an end-to-end framework for NER for Indian languages in a low-resource setting by exploiting parallel corpora of English and Indian languages and an English NER dataset. The proposed framework includes an annotation projection method that combines word alignment score and NER tag prediction confidence score on source language (English) data to generate weakly labeled data in a target Indian language. We employ a variant of the Teacher-Student model and optimize it jointly on the pseudo labels of the Teacher model and predictions on the generated weakly labeled data. We also present manually annotated test sets for three Indian languages: Hindi, Bengali, and Gujarati. We evaluate the performance of the proposed framework on the test sets of the three Indian languages. Empirical results show a minimum 10% performance improvement compared to the zero-shot transfer learning model on all languages. This indicates that weakly labeled data generated using the proposed annotation projection method in target Indian languages can complement well-annotated source language data to enhance performance. Our code is publicly available at https://github.com/aksh555/CL-NERIL.
Developing Named Entity Recognition (NER) systems for Indian languages has been a long-standing challenge, mainly owing to the requirement of a large amount of annotated clean training instances. This paper proposes an end-to-end framework for NER for Indian languages in a low-resource setting by exploiting parallel corpora of English and Indian languages and an English NER dataset. The proposed framework includes an annotation projection method that combines word alignment score and NER tag prediction confidence score on source language (English) data to generate weakly labeled data in a target Indian language. We employ a variant of the Teacher-Student model and optimize it jointly on the pseudo labels of the Teacher model and predictions on the generated weakly labeled data. We also present manually annotated test sets for three Indian languages: Hindi, Bengali, and Gujarati. We evaluate the performance of the proposed framework on the test sets of the three Indian languages. Empirical results show a minimum 10% performance improvement compared to the zero-shot transfer learning model on all languages. This indicates that weakly labeled data generated using the proposed annotation projection method in target Indian languages can complement well-annotated source language data to enhance performance. Our code is publicly available at https://github.com/aksh555/CL-NERIL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.