Deaf individuals have been known to process visual stimuli better at the periphery compared to the normal hearing population. However, very few studies have examined attention orienting in the oculomotor domain in the deaf, particularly when targets appear at variable eccentricity. In this study, we examined if the visual perceptual processing advantage reported in the deaf people also modulates spatial attentional orienting with eye movement responses. We used a spatial cueing task with cued and uncued targets that appeared at two different eccentricities and explored attentional facilitation and inhibition. We elicited both a saccadic and a manual response. The deaf showed a higher cueing effect for the ocular responses than the normal hearing participants. However, there was no group difference for the manual responses. There was also higher facilitation at the periphery for both saccadic and manual responses, irrespective of groups. These results suggest that, owing to their superior visual processing ability, the deaf may orient attention faster to targets. We discuss the results in terms of previous studies on cueing and attentional orienting in deaf.
Compensatory changes as a result of auditory deprivation in the deaf lead to higher visual processing skills. In two experiments, we explored if such brain plasticity in the deaf modulates processing of masked stimuli in the visual modality. Deaf and normal-hearing participants responded to targets either voluntarily or by instruction. Masked primes related to the response were presented briefly before the targets at the center and the periphery. In Experiment 1, targets appeared only at the foveal region whereas, in Experiment 2, they appeared both at the fovea and the periphery. The deaf showed higher sensitivity to masked primes in both the experiments. They chose the primed response more often and also were faster during congruent responses compared to the normal hearing. These results suggest that neuroplasticity in the deaf modulates how they perceive and use information with reduced visibility for action selection and execution.
We explored the effect of deafness on the spatial (gradient) and temporal (decay) properties of oculomotor inhibition of return (IOR) using a task developed by Vaughan (Theoretical and applied aspects of eye movement research. Elsevier, North Holland, pp 143-150, 1984) in which participants made a sequence of saccades to carefully placed targets . Unlike IOR tasks in which ignored cues are used to explore the aftereffects of covert orienting, this task better approximates real-world behavior in which participants are free to make eye movements to potentially relevant inputs. Because IOR is a bias against returning attention and gaze to a previously attended location, we expected to find, and we did find, slower saccades toward previously fixated locations. Replicating Vaughan, a gradient of inhibition around a previously fixated location was observed and this inhibition began to decay after 1200 ms. Importantly, there were no significant differences between the deaf and the normal hearing subjects, on neither the magnitude of oculomotor IOR, nor its decay over time, nor its gradient around the previously fixated location .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.