In recent times, the utility and privacy are trade-off factors with the performance of one factor tends to sacrifice the other. Therefore, the dataset cannot be published without privacy. It is henceforth crucial to maintain an equilibrium between the utility and privacy of data. In this paper, a novel technique on trade-off between the utility and privacy is developed, where the former is developed with a metaheuristic algorithm and the latter is developed using a cryptographic model. The utility is carried out with the process of clustering, and the privacy model encrypts and decrypts the model. At first, the input datasets are clustered, and after clustering, the privacy of data is maintained. The simulation is conducted on the manufacturing datasets over various existing models. The results show that the proposed model shows improved clustering accuracy and data privacy than the existing models. The evaluation with the proposed model shows a trade-off privacy preservation and utility clustering in smart manufacturing datasets.
Considering task dependencies, the balancing of the Internet of Health Things (IoHT) scheduling is considered important to reduce the make span rate. In this paper, we developed a smart model approach for the best task schedule of Hybrid Moth Flame Optimization (HMFO) for cloud computing integrated in the IoHT environment over e-healthcare systems. The HMFO guarantees uniform resource assignment and enhanced quality of services (QoS). The model is trained with the Google cluster dataset such that it learns the instances of how a job is scheduled in cloud and the trained HMFO model is used to schedule the jobs in real time. The simulation is conducted on a CloudSim environment to test the scheduling efficacy of the model in hybrid cloud environment. The parameters used by this method for the performance assessment include the use of resources, response time, and energy utilization. In terms of response time, average run time, and lower costs, the hybrid HMFO approach has offered increased response rate with reduced cost and run time than other methods.
Radio frequency identification (RFID) technology has already demonstrated its use. RFID is used in many productions for different applications, for example, apparatus chasing, personal and vehicle access panels, logistics, baggage, and safety items in departmental stores. The main benefits of RFID are optimizing resources, quality customer service, improved accuracy, and efficient business and healthcare procedures. In addition, RFID can help to recognize appropriate information and help advance the probability of objects for certain functions. Nevertheless, RFID components need to be studied for use in healthcare. Antennas, tags, and readers are the main components of RFID. The study of these elements provides an understanding of the usage and integration of these components in healthcare environments. The security of the patient is now a global alarm for public health, particularly among older people who need integrated and technologically integrated physiological health monitoring systems to monitor medical needs and manage them. This paper proposes using Internet of Things (IoT) and RFID tags as an effective healthcare monitoring system. In this method, we utilize RFID dual-band protocols that are useful for identifying individual persons and are used to monitor body information using high frequency. The patient’s physiological data are monitored and collected by sensors to recognize the patient, using an RFID tag. The IoT-based RFID healthcare provides the elderly and people with physiological information. The aim is also to secure patient health records using the signing algorithm based on the hyperelliptic curve (HEC) and to provide the physician with access to health information for patients. Furthermore, the confidentiality of the medical records for patients of variable length is provided. The evaluation reveals the algorithm proposed for optimum health care with different genus curves.
The Internet of Things (IoT) is commonly employed to detect different kinds of diseases in the health sector. Presently, disease detection is performed using MRI images, X-rays, CT scans, and so on for diagnosing the diseases. The manual detection process is found to be time-consuming and may result in detection errors that affect the diagnosis. Hence, there is a need for an automatic system for which the deep learning methods gain a major interest. Hence, the idea to combine deep learning and disease prediction to effectively predict the disease is initiated. In this research, the deep learning method is combined with deep learning for the effective prediction of diseases, where the IoT network is employed in the data collection from the patients. The proposed cuckoo-based deep convolutional long-short term memory (deep convLSTM) classifier is employed for disease prediction, where the cuckoo search optimization is utilized for tuning the deep convLSTM classifier. The proposed method is compared with the conventional methods, and it achieved a training percentage of 97.591%, 95.874%, and 97.094%, respectively, for accuracy, sensitivity, and specificity. The comparative analysis proved that the proposed method obtained higher accuracy than other methods.
Authentication is a suitable form of restricting the network from different types of attacks, especially in case of fifth-generation telecommunication networks, especially in healthcare applications. The handover and authentication mechanism are one such type that enables mitigation of attacks in health-related services. In this paper, we model an evolutionary model that uses a fuzzy evolutionary model in maintaining the handover and key management to improve the performance of authentication in nanocore technology-based 5G networks. The model is designed in such a way that it minimizes the delays and complexity while authenticating the networks in 5G networks. The attacks are mitigated using an evolutionary model when it is trained with the relevant attack datasets, and the model is validated to mitigate the attacks. The simulation is conducted to test the efficacy of the model, and the results of simulation show that the proposed method is effective in improving the handling and authentication and mitigation against various types of attacks in mobile health applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.