Revenue management and dynamic pricing are concepts that have immense possibilities for application in the energy sector. Both can be considered as demand-side management tools that can facilitate the offering of different prices at different demand levels. This paper studies literature on various topics related to the dynamic pricing of electricity and lists future research avenues in pricing policies, consumers' willingness to pay and market segmentation in this field. Demand and price forecasting play an important role in determining prices and scheduling load in dynamic pricing environments. This allows different forms of dynamic pricing policies to different markets and customers depending on customers' willingness to pay. Consumers' willingness to pay for electricity services is also necessary in setting price limits depending on the demand and demand response curve. Market segmentation can enhance the effects of such pricing schemes. Appropriate scheduling of electrical load enhances the consumer response to dynamic tariffs.
Mathematical programming techniques were used in the steel industry as early as 1958, and many applications of optimization in steel production have been reported since then. In this survey, we summarize published applications in the largest steel plants by type, including national steel planning, product-mix optimization, blending, scheduling, set covering, and cutting stock.Steel, Applications, Mathematical Programming, Optimization
Purpose
The purpose of this paper is to estimate the relative efficiencies of banks of the Indian domestic banking sector by employing various models of data envelopment analysis (DEA) using the panel data of the recent decade (2008–2017). The paper provides a comparative analysis of these models based on the efficiency outputs. It compares the performance of banks based on their ownership and sizes and studies the decade-long trend of productivity using Malmquist indices.
Design/methodology/approach
This paper estimates overall technical, pure technical and scale efficiencies of 21 public sector banks and 17 private banks. It compares the descriptive statistics of efficiency estimates found out through 18 different DEA models and compares them using two non-parametric statistical tests. It studies the difference in efficiencies based on ownership and size by applying the same statistical tests. It employs the Malmquist index method to study the technological and technical progress in the banks’ productivity over the decade of FY 2008–FY 2017.
Findings
During FY 2016–2017, only 9 out of 38 banks were overall technically efficient with the whole sample having a mean overall technical inefficiency of 5 percent with scale inefficiency contributing more than pure technical inefficiency. The comparative study ascertains that private sector and public sector banks (PSBs) possess efficiencies that are similar based on super-efficiency slack-based model – variable returns to scale and non-oriented, a model that the authors argue to be the most suitable for the real-life business banking scenarios whereas the private sector banks possess better efficiency than the PSBs. The Malmquist indices prove that private sector banks have a higher increase in productivity based on both technological progress and efficiency improvements whereas PSBs had a loss of efficiency and comparatively less improvement in technology.
Research limitations/implications
This study has a limitation of choosing a single model of inputs and outputs. Improved insights can be drawn by employing more models based on different inputs and outputs. Further, relevance of each input and output can be examined using a regression-based feedback mechanism (Ouenniche and Carrales, 2018). The influence of environmental factors on the efficiencies can be studied using second-stage regression models and the relationship between efficiency scores and financial ratios can be examined.
Originality/value
This study is based on the panel data of the recent decade (2008–2017) and provides insights into the efficiency scenario of the Indian banking industry and how it changed over the past decade, to the leadership of banks, the banking regulators and the policy makers. The comparative analysis of DEA models based on a sample of Indian banks is first of its kind in the Indian context and helps the researchers to select an appropriate model and delve into further research on the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.