Artificial synapse is the basic unit of a neuromorphic computing system. However, there is a need to explore suitable synaptic devices for the emulation of synaptic dynamics. This study demonstrates a photonic multimodal synaptic device by implementing a perovskite quantum dot charge-trapping layer in the organic poly(3-hexylthiophene-2,5-diyl) (P3HT) channel transistor. The proposed device presents favorable band alignment that facilitates spatial separation of photogenerated charge carriers. The band alignment serves as the basis of optically induced charge trapping, which enables nonvolatile memory characteristics in the device. Furthermore, high photoresponse and excellent synaptic characteristics, such as short-term plasticity, long-term plasticity, excitatory postsynaptic current, and paired-pulse facilitation, are obtained through gate voltage regulation. Photosynaptic characteristics obtained from the device showed a multiwavelength response and a large dynamic range (∼10 3 ) that is suitable for realizing a highly accurate artificial neural network. Moreover, the device showed nearly linear synaptic weight update characteristics with incremental depression electric gate pulse. The simulation based on the experimental data showed excellent pattern recognition accuracy (∼85%) after 120 epochs. The results of this study demonstrate the feasibility of the device as an optical synapse in the next-generation neuromorphic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.