The use of facial masks in public spaces has become a social obligation since the wake of the COVID-19 global pandemic and the identification of facial masks can be imperative to ensure public safety. Detection of facial masks in video footages is a challenging task primarily due to the fact that the masks themselves behave as occlusions to face detection algorithms due to the absence of facial landmarks in the masked regions. In this work, we propose an approach for detecting facial masks in videos using deep learning. The proposed framework capitalizes on the MTCNN face detection model to identify the faces and their corresponding facial landmarks present in the video frame. These facial images and cues are then processed by a neoteric classifier that utilises the MobileNetV2 architecture as an object detector for identifying masked regions. The proposed framework was tested on a dataset which is a collection of videos capturing the movement of people in public spaces while complying with COVID-19 safety protocols. The proposed methodology demonstrated its effectiveness in detecting facial masks by achieving high precision, recall, and accuracy.
The practice of social distancing is imperative to curbing the spread of contagious diseases and has been globally adopted as a non-pharmaceutical prevention measure during the COVID-19 pandemic. This work proposes a novel framework named SD-Measure for detecting social distancing from video footages. The proposed framework leverages the Mask R-CNN deep neural network to detect people in a video frame. To consistently identify whether social distancing is practiced during the interaction between people, a centroid tracking algorithm is utilised to track the subjects over the course of the footage. With the aid of authentic algorithms for approximating the distance of people from the camera and between themselves, we determine whether the social distancing guidelines are being adhered to. The framework attained a high accuracy value in conjunction with a low false alarm rate when tested on Custom Video Footage Dataset (CVFD) and Custom Personal Images Dataset (CPID), where it manifested its effectiveness in determining whether social distancing guidelines were practiced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.