Solar cycle 24 is one of the weakest solar cycles recorded, but surprisingly the declining phase of it had a slow CME which evolved without any low coronal signature and is classified as a stealth CME which was responsible for an intense geomagnetic storm at Earth (Dst = -176 nT). The impact of this space weather event on the terrestrial ionosphere has been reported. However, the propagation of this CME beyond 1 au and the impact of this CME on other planetary environments have not been studied so far. In this paper, we analyse the data from Sun-Earth L1 point as well as from the Martian orbit (near 1.5 au) to understand the characteristics of the stealth CME as observed beyond 1 au. The observations near Earth are using data from the Solar Dynamics Observatory (SDO) and the Advanced Composition Explorer (ACE) satellite located at L1 point whereas those near Mars are from the instruments for plasma and magnetic field measurements on board Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The observations show that the stealth CME has reached 1.5 au after 7 days of its initial observations at the Sun and caused depletion in the nightside topside ionosphere of Mars, as observed during the inbound phase measurements of the Langmuir Probe and Waves (LPW) instrument on board MAVEN. These observations have implications on the ion escape rates from the Martian upper atmosphere.
Aditya-L1, the first ever Indian scientific space mission dedicated to probe the Sun, our nearest star, is slated for launch by the Indian Space Research Organisation (ISRO) most likely in 2020, the year coinciding with the expected start of the rising phase of solar cycle 25. Of the seven science payloads on-board Aditya-L1, three are in situ instruments, namely the Aditya Solar wind Particle EXperiment, the Plasma Analyser Package for Aditya and a magnetometer package. These three payloads will sample heliospheric data from the L1 Lagrangian point of the Sun-Earth system, at a distance of ~1% of the distance to the Sun, along the Sun-Earth line. This is therefore a unique opportunity for the solar physics community to gain a better understanding of the inner heliosphere and predict space weather more accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.