An autonomous deterministic non-linear epidemic model SEQIHRS is proposed for the transmission dynamics of an infectious disease with quarantine and isolation control strategies in a community with pre-existing immunity. The model exhibits two equilibria, namely, the disease-free and a unique endemic equilibrium. The existence and local stability of the disease free and endemic equilibria are explored in terms of the effective reproduction number R C . It is observed that media coverage does not affect the effective reproduction number, but it helps to mitigate disease burden by lowering the number of infectious individuals at the endemic steady state and also lowering the infection peak. A new approach is proposed to estimate the coefficient of media coverage. Using the results of central manifold theory, it is established that as R C passes through unity, transcritical bifurcation occurs in the system and the unique endemic equilibrium is asymptotically stable. It is observed that the population level impact of quarantine and isolation depend on the level of transmission by the isolated individuals. Moreover, the higher level of pre-existing immunity in the population decreases the infection peak and causes its early arrival. Theoretical findings are supported by numerical simulation. Sensitivity analysis is performed for R C and state variables at endemic steady state with respect to model parameters.
Oogenesis is a fundamental process that forms the egg and, is crucial for the transmission of genetic information to the next generation.
Drosophila
oogenesis has been used extensively as a genetically tractable model to study organogenesis, niche-germline stem cell communication, and more recently reproductive aging including germline stem cell (GSC) aging. Autophagy, a lysosome-mediated degradation process, is implicated in gametogenesis and aging. However, there is a lack of genetic tools to study autophagy in the context of gametogenesis and GSC aging. Here we describe the generation of three transgenic lines mcherry-Atg8a, GFP-Ref(2)P and mito-roGFP2-Orp1 that are specifically expressed in the germline compartment including GSCs during
Drosophila
oogenesis. These transgenes are expressed from the
nanos
promoter and present a better alternative to UASp mediated overexpression of transgenes. These fluorescent reporters can be used to monitor and quantify autophagy, and the production of reactive oxygen species during oogenesis. These reporters provide a valuable tool that can be utilized in designing genetic screens to identify novel regulators of autophagy and redox homeostasis during oogenesis.
Silicone elastomer (SiR) nanocomposites were prepared using multiwalled carbon nanotubes (MWCNT) and nano-graphite (NG). The morphology of the SiR nanocomposites has been studied using scanning electron microscopy and high-resolution transmission electron microscopy techniques. Detailed analysis of the morphology reveals a uniform distribution of the MWCNT and NG filler particles in the silicone matrix. On increasing the filler loading, a continuous network structure is formed and aggregation takes place. The effect of the MWCNT and NG loadings on the thermal properties of the silicone elastomer has been investigated. The thermal properties of the SiR nanocomposites were measured by a thermal properties analyzer based on the transient hot-wire method. Studies also suggest that incorporation of nanoparticles improves the thermal conductivity of SiR nanocomposites. The thermal conductivity of SiR nanocomposites increased from 0.200 W/(m K) to 0.440 W/(m K) and to 0.310 W/(m K) for 6 wt% MWCNT and NG loadings, respectively. Because of the positive temperature coefficient and the conductive nature of the nanoparticles, the thermal conductivity of the material increased on increasing the temperature. The thermal diffusivity and the volumetric heat capacity of the SiR nanocomposites were measured. The thermal diffusivity of the SiR nanocomposites increased from 0.1194 mm2/s to 0.3209 mm2/s and to 0.2050 mm2/s for 6 wt% MWCNT and NG loadings, respectively. This indicates that the temperature response becomes faster with MWCNT and NG loadings. The volumetric heat capacity of the silicone elastomer nanocomposites decreased from 1.80 MJ/(m3K) to 1.34 MJ/(m3K) and to 1.40 MJ/(m3K) for 6 wt% MWCNT and NG loadings, respectively. Thus, MWCNT particles are more effective in increasing the thermal conductivity and diffusivity of the SiR nanocomposites, when compared to NG fillers at any loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.