The molecular mechanism involved in BmNPV resistance was investigated using a genome wide microarray in midgut tissue of Indian silkworm Bombyx mori. In resistant race (Sarupat), 735 genes up-regulated and 589 genes down-regulated at 12 h post BmNPV infection. Similarly, in case of susceptible race (CSR-2), 2183 genes up-regulated and 2115 genes down-regulated. Among these, nine up-regulated and eight down-regulated genes were validated using real-time qPCR analysis. In Sarupat, vacuolar protein sorting associated, Xfin-like protein and carboxypeptidase E-like protein genes significantly up-regulated in infected midgut; prominently down-regulated genes were glutamate receptor ionotropic kainite 2-like, BTB/POZ domain and transferrin. Considerably up-regulated genes in the CSR-2 were peptidoglycan recognition protein S6 precursor and rapamycin while the conspicuous down-regulated genes were facilitated trehalose transporter and zinc transporter ZIP1-like gene. The up-regulation of genes in resistant race after BmNPV infection indicates their possible role in antiviral immune response.
The variation in the level of immune response related gene expression in silkworm, Bombyx mori following infection with Bombyx mori nucleopolyhedrovirus (BmNPV) was analyzed at different time intervals. The occlusion bodies of BmNPV orally inoculated to the two most divergent silkworm races viz., Sarupat (resistant to BmNPV infection) and CSR2 (susceptible to BmNPV infection) were subjected to oral BmNPV inoculation. The expression profile of gp41 gene of BmNPV in the Sarupat and CSR2 races revealed that the virus could invade the midguts of both susceptible and resistant races. However, its multiplication was significantly less in the midgut of resistant race, while, in the susceptible race, the viral multiplication reached maximum level within 12 h. These findings indicate that potential host genes are involved in the inhibition of viral multiplication within larval midgut.
While the world is still struggling with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, an aggressive and rare fungal infection which is commonly ascribed as the black fungus has emerged as a new medical challenge in India. India had already experienced the devastating consequences of the COVID-19 and, being a rare "opportunistic" fungal infection, black fungus infection has severely complicated the post-COVID-19 recoveries. Together with the uncertain treatment modalities at the beginning of the pandemic, indiscriminate use of a plethora of medications has driven the surging cases of black fungus-associated complications. Moreover, low oxygen, high iron levels, and prolonged hospitalization with mechanical ventilators created a superlative condition for contracting black fungus infection. The disease mainly spreads through the respiratory tract and erodes facial structures. Since mucormycosis specifically attacks immunosuppressed patients, the disease started spreading rapidly, with an average mortality rate of 54 %. Common symptoms include blackening over the nose, blurred or double vision, breathing difficulties, chest pain and hemoptysis. Although not contagious, the outcome of the disease is often very frightful.If the infection disseminates systematically, the risk of affecting the vital organs such as the spleen and heart is substantially high. We have tried to provide an epidemiological overview of black fungus infection in India. We focused on drawing a comprehensive fact check of the current situation through an immunological perspective to better understand the infection as a major co-infection in patients affected by COVID-19 and its impact on India's fight against the COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.