Fatty acids are widely occurring in natural fats and dietary oils and they are known to have antibacterial and antifungal properties. However, little is known on the antibacterial and antifungal properties of the blindyour-eye mangrove (Excoecaria agallocha) and this study for the first time determines the fatty acid composition and the antibacterial and antifungal activities of Fatty Acid Methyl Esters (FAME) of the blindyour-eye mangrove plant found along the coastal areas of south India.
The prevalence of type-2 diabetes (T2D) is increasing significantly throughout the globe since the last decade. This heterogeneous and multifactorial disease, also known as insulin resistance, is caused by the disruption of the insulin signaling pathway. In this review, we discuss the existence of various miRNAs involved in regulating the main protein cascades in the insulin signaling pathway that affect insulin resistance. The influence of miRNAs (miR-7, miR-124a, miR-9, miR-96, miR-15a/b, miR-34a, miR-195, miR-376, miR-103, miR-107, and miR-146) in insulin secretion and beta (β) cell development has been well discussed. Here, we highlight the role of miRNAs in different significant protein cascades within the insulin signaling pathway such as miR-320, miR-383, miR-181b with IGF-1, and its receptor (IGF1R); miR-128a, miR-96, miR-126 with insulin receptor substrate (IRS) proteins; miR-29, miR-384-5p, miR-1 with phosphatidylinositol 3-kinase (PI3K); miR-143, miR-145, miR-29, miR-383, miR-33a/b miR-21 with AKT/protein kinase B (PKB) and miR-133a/b, miR-223, miR-143 with glucose transporter 4 (GLUT4). Insulin resistance, obesity, and hyperlipidemia (high lipid levels in the blood) have a strong connection with T2D and several miRNAs influence these clinical outcomes such as miR-143, miR-103, and miR-107, miR-29a, and miR-27b. We also corroborate from previous evidence how these interactions are related to insulin resistance and T2D. The insights highlighted in this review will provide a better understanding on the impact of miRNA in the insulin signaling pathway and insulin resistance-associated diagnostics and therapeutics for T2D.
In last few years, the use of zebrafish (Danio rerio) in scientific research is growing very rapidly. Initially, it was a popular as a model of vertebrate development because zebrafish embryos are transparent and also develop rapidly. Presently, the research using zebrafish is expanding into other areas such as pharmacology, clinical research as a diseases model and interestingly in drug discovery. The use of zebrafish in pharmaceutical research and discovery and drug development is mainly screening of lead compounds, target identification, target validation, morpholino oligonucleotide screens, assay development for drug discovery, physiology based drug discovery, quantitative structure-activity relationship (QSAR) and structure -activity relationships (SAR) study and drug toxicity study. In this paper, we have described properly all the areas of drug discovery where zebrafish is used as a tool. We are hopeful that the use of these techniques or methods will make the zebrafish a prominent model in drug discovery and development research in the forthcoming years.
A key aim in biology and psychology is to identify fundamental principles underpinning the behavior of animals, including humans. Analyses of human language and the behavior of a range of non-human animal species have provided evidence for a common pattern underlying diverse behavioral phenomena: Words follow Zipf's law of brevity (the tendency of more frequently used words to be shorter), and conformity to this general pattern has been seen in the behavior of a number of other animals. It has been argued that the presence of this law is a sign of efficient coding in the information theoretic sense. However, no strong direct connection has been demonstrated between the law and compression, the information theoretic principle of minimizing the expected length of a code. Here, we show that minimizing the expected code length implies that the length of a word cannot increase as its frequency increases. Furthermore, we show that the mean code length or duration is significantly small in human language, and also in the behavior of other species in all cases where agreement with the law of brevity has been found. We argue that compression is a general principle of animal behavior that reflects selection for efficiency of coding.
We hybridized whole human chromosome-specific DNA libraries to chromosomes of two supposed subspecies of Alouatta seniculus: Alouatta seniculus sara and Alouatta seniculus arctoides. The number of hybridization signals per haploid set is 42 in A. s. sara and 43 in A. s. arctoidea; the two karyotypes differ by at least 16 chromosomal rearrangements, including numerous translocations. An unusual sex chromosome system is shared by both taxa. The sex chromosome system results from a Y translocation with a chromosome homologous to parts of human chromosome 3/15 and can be described as X1X2Y1Y2/X1X1X2X2 (male/female). Both red howlers also have microchromosomes, a highly unusual karyological trait not found in other higher primates. These microchromosomes are not hybridized by any human chromosome paint and therefore are probably composed of repetitive DNA. It is well known that New World monkeys have high karyological variability. It is probable that molecular cytogenetic analyses including chromosome painting will permit an accurate reconstruction of the phylogeny of these monkeys and help establish the ancestral karyotype for higher primates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.