Real-time monitoring of the spatial and temporal progression of infection/gene expression in animals will contribute greatly to our understanding of host-pathogen interactions while reducing the number of animals required to generate statistically significant data sets. Sensitive in vivo imaging technologies can detect low levels of light emitted from luciferase reporters in vivo, but the existing reporters are not optimal for fungal infections. Therefore, our aim was to develop a novel reporter system for imaging Candida albicans infections that overcomes the limitations of current luciferase reporters for this major fungal pathogen. This luciferase reporter was constructed by fusing a synthetic, codon-optimized version of the Gaussia princeps luciferase gene to C. albicans PGA59, which encodes a glycosylphosphatidylinositol-linked cell wall protein. Luciferase expressed from this PGA59-gLUC fusion (referred to as gLUC59) was localized at the C. albicans cell surface, allowing the detection of luciferase in intact cells. The analysis of fusions to strong (ACT1 and EFT3), oxidative stress-induced (TRX1, TRR1, and IPF9996), and morphogenesis-dependent (HWP1) promoters confirmed that gLUC59 is a convenient and sensitive reporter for studies of gene regulation in yeast or hyphal cells, as well as a flexible screening tool. Moreover, the ACT1-gLUC59 fusion represented a powerful tool for the imaging of disease progression in superficial and subcutaneous C. albicans infections. gLUC59 and related cell surfaceexposed luciferase reporters might find wide applications in molecular biology, cell biology, pathobiology, and high-throughput screens.Candida albicans is responsible for a large fraction of fungal infections in humans (5) and, as such, has received considerable attention from the research community over the last two decades. C. albicans now represents an invaluable model for dissecting the interplay between fungal pathogens and their hosts at the molecular level (31,32,43,45,50). Studies of host-pathogen interactions have been greatly facilitated by the use of ex vivo infection models where isolated microorganisms and host cells or reconstituted tissues are brought into contact and the kinetics of pathogen and host cell responses are monitored (12,14,23,36,45). Yet, animal models remain necessary complements to ex vivo infection models, because none of these models fully reflect the development of clinical infections. Animal models allow researchers to monitor the behavior of mutant microorganisms or the expression of reporter genes in the complex environments of organs and in the presence of a fully functional or debilitated immune system (3,20,24).A current limitation of animal models is the need to sacrifice animals in order to image microorganisms at the site of infection. In particular, studies aimed at evaluating whether conditions known to trigger the expression of a specific C. albicans gene in vitro are encountered at sites of infection have often relied on the detection of a reporter in tissue section...
Candida albicans can form biofilms that exhibit elevated intrinsic resistance to various antifungal agents, in particular azoles and polyenes. The molecular mechanisms involved in the antifungal resistance of biofilms remain poorly understood. We have used transcript profiling to explore the early transcriptional responses of mature C. albicans biofilms exposed to various antifungal agents. Mature C. albicans biofilms grown under continuous flow were exposed for as long as 2 h to concentrations of fluconazole (FLU), amphotericin B (AMB), and caspofungin (CAS) that, while lethal for planktonic cells, were not lethal for biofilms. Interestingly, FLU-exposed biofilms showed no significant changes in gene expression over the course of the experiment. In AMB-exposed biofilms, 2.7% of the genes showed altered expression, while in CAS-exposed biofilms, 13.0% of the genes had their expression modified. In particular, exposure to CAS resulted in the upregulation of hypha-specific genes known to play a role in biofilm formation, such as ALS3 and HWP1. There was little overlap between AMB-or CAS-responsive genes in biofilms and those that have been identified as AMB, FLU, or CAS responsive in C. albicans planktonic cultures. These results suggested that the resistance of C. albicans biofilms to azoles or polyenes was due not to the activation of specific mechanisms in response to exposure to these antifungals but rather to the intrinsic properties of the mature biofilms. In this regard, our study led us to observe that AMB physically bound C. albicans biofilms and beta-glucans, which have been proposed to be major constituents of the biofilm extracellular matrix and to prevent azoles from reaching biofilm cells. Thus, enhanced extracellular matrix or beta-glucan synthesis during biofilm growth might prevent antifungals, such as azoles and polyenes, from reaching biofilm cells, thus limiting their toxicity to these cells and the associated transcriptional responses.
Clostridium difficile has been identified as the most important single identifiable cause of nosocomial antibiotic-associated diarrhea and colitis. Virulent strains of C. difficile produce two large protein toxins, toxin A and toxin B, which are involved in pathogenesis. In this study, we examined the effect of lysogeny by ⌽CD119 on C. difficile toxin production. Transcriptional analysis demonstrated a decrease in the expression of pathogenicity locus (PaLoc) genes tcdA, tcdB, tcdR, tcdE, and tcdC in ⌽CD119 lysogens. During this study we found that repR, a putative repressor gene of ⌽CD119, was expressed in C. difficile lysogens and that its product, RepR, could downregulate tcdA::gusA and tcdR::gusA reporter fusions in Escherichia coli. We cloned and purified a recombinant RepR containing a C-terminal six-His tag and documented its binding to the upstream regions of tcdR in C. difficile PaLoc and in repR upstream region in ⌽CD119 by gel shift assays. DNA footprinting experiments revealed similarities between the RepR binding sites in tcdR and repR upstream regions. These findings suggest that presence of a CD119-like temperate phage can influence toxin gene regulation in this nosocomially important pathogen.Clostridium difficile, a gram-positive, anaerobic, spore-forming bacterium, has been identified as one of the major causative agents of antibiotic-associated diarrhea and pseudomembranous colitis. C. difficile produces toxins A and B that damage intestinal mucosa and cause fluid accumulation in the colon (1). The toxin genes tcdA and tcdB, along with accessory genes tcdR, tcdC, and tcdE, are part of a 19.6-kb pathogenicity locus (PaLoc). Toxin genes tcdA and tcdB are positively regulated by TcdR (previously TxeR) (27), and tcdC is involved in the negative regulation of toxin genes (16,29). In pathogenic C. difficile strains, the PaLoc is present at identical locations in the chromosome, whereas it is completely absent in nontoxinogenic strains. This observation has led to the suggestion that the presence of the toxin gene cluster may be associated with a transposable genetic element (3). In other clostridial species, toxins are known to be encoded by mobile genetic elements such as bacteriophages and plasmids (6,9,10,31).Following publication of the genome of ⌽CD119 (15), the genome of a second C. difficile temperate phage (⌽C2, a member of the Myoviridae) was published (13). More recently, eight temperate phages were characterized from six different C. difficile isolates, including the hypervirulent strain responsible for a multi-institutional outbreak (NAP1/027 or QCD-32g58) (11). In addition, the multidrug-resistant C. difficile strain CD630 was found to harbor two highly related prophages (13, 39) as part of its mosaic genome, where nearly 11% is made of mobile genetic elements. Thus, it appears that C. difficile strains often harbor temperate phage(s) as part of their genetic makeup. No direct evidence of lysogenic conversion of a nontoxinogenic C. difficile strain to toxin production was shown. However...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.