The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense, single-stranded RNA virus that causes the potentially lethal Covid-19 respiratory tract infection. It does so by binding to host cell angiotensin converting enzyme 2 (ACE2) receptors, leading to endocytosis with the receptor, and subsequently using the host cell's machinery to replicate copies of itself and invade new cells. The extent of the spread of infection in the body is dependent on the pattern of ACE2 expression and overreaction of the immune system. Additionally, by inducing an imbalance in the renin-angiotensin-aldosterone system (RAAS) and the loss of ACE2 would favour the progression of inflammatory and thrombotic processes in the lungs. No drug or vaccine has yet been approved to treat human coronaviruses. Hundreds of clinical trials on existing approved drugs from different classes acting on a multitude of targets in the virus life cycle are ongoing to examine potential effectiveness for the prevention and treatment of the infection. This review summarizes the SARS-CoV-2 virus life cycle in the host cell and provides a biological and pathological point of view for repurposed and experimental drugs for this novel coronavirus. The viral life cycle provides potential targets for drug therapy.
The pleiotropic actions of angiotensin II are mediated by the primarily G(q) protein-coupled type 1 angiotensin (AT(1)) receptor. In this study a mutational analysis of the function of the conserved DRYXXV/IXXPL domain in the second intracellular loop of the rat AT(1A) receptor was performed in COS7 cells. Alanine substitution studies showed that single replacement of the highly conserved Asp(125) and Arg(126), but not Tyr(127), moderately impaired angiotensin II-induced inositol phosphate signaling. However, concomitant substitution of both Asp(125) and Arg(126) caused marked reduction of both inositol phosphate signaling and receptor internalization. Alanine scanning of the adjacent residues showed that substitution of Ile(130), His(132), and Pro(133) reduced agonist-induced inositol phosphate signal generation, whereas mutations of Met(134) also impaired receptor internalization. Expression of the D125A mutant AT(1A) receptor in COS7 cells endowed the receptor with moderate constitutive activity, as indicated by its enhanced basal Elk1 promoter activity and inositol phosphate response to partial agonists. Angiotensin II-induced stimulation of the Elk1 promoter showed parallel impairment with inositol phosphate signal generation in receptors containing mutations in this region of the AT(1A) receptor. These data confirm that Ca(2+) signal generation is required for the nuclear effects of angiotensin II-induced ERK activation. They are also consistent with the role of the conserved DRY sequence of the AT(1A) receptor in receptor activation, and of Asp(125) in constraining the receptor in its inactive conformation. Furthermore, in the cytoplasmic helical extension of the third helix, an apolar surface that includes Ile(130) and Met(134) appears to have a direct role in G protein coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.