In an effort to isolate the role of nanofiller independent of changes in polymer microstructure, we report the processing and characterization of model amorphous polyamide/clay nanocomposites. Analyses confirm fully amorphous character, no change inTgor thermal stability, and a partially exfoliated structure. The tensile modulus, yield stress, and failure stress increase with the clay content, both in dried and conditioned samples. In contrast, failure strain decreases with increasing clay content in conditioned samples but is independent of clay content in dried samples. Concurrently, the conversion of mechanical work to heat during plastic deformation was studied using infrared thermography, with the heat of deformation estimated based on these results and compared to the work of deformation. These results allow us to quantify changes in deformation mechanism and to conclude that the presence of clay enhances the conversion of mechanical energy to heat in these materials.
Due to their chemical inertness and low friction coefficient, fluoropolymers are today widely employed in sectors of activity as diverse and distinct as the textile industry, architectural sector, and medicine. However, their low surface energy results in poor adhesion, for example, when used for a component in a composite device with multiple other materials. Among the techniques used to enhance their adhesion, atmospheric pressure discharges provide a fast and low-cost method with a reduced environmental impact. Although this approach has proven to be efficient, the different chemical and physical processes in the discharge remain not fully understood. In this study, fluoropolymer surfaces were modified using an atmospheric pressure dielectric barrier discharge in a nitrogen and organic precursor environment. To prevent any damage to fluoropolymer surfaces, the dissipated power in the discharges was tuned by applying a duty cycle. Evidence shows that plasma treatment allows for the incorporation of oxygen and nitrogen in the surface resulting in the formation of hydrophilic functionalities such as carbonyl groups both in ketone and amide form, amine, and hydroxyl groups after 180 s of treatment. Overall, the data reveal that the discharge duty cycle has more effect on the oxygen and carbon content in the coating than the precursor concentration. In addition, increasing the precursor concentration limits the molecular fragmentation and nitrogen incorporation into the coating. These experiments enable the building of a better fundamental understanding of the formation mechanism of such chemical moieties at the fluoropolymer surface.
We report the production of transparent, amorphous, partially exfoliated polyamide / nanoclay nanocomposites. Stiffness and yield strength increase with nanoclay content, while work-of-fracture remains constant below an inorganic content of 0.25 vol%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.