SummaryDistal-less has been repeatedly co-opted for the development of many novel traits. Here, we document its curious role in the development of a novel abdominal appendage (“sternite brushes”) in sepsid flies. CRISPR/Cas9 deletions in the homeodomain result in losses of sternite brushes, demonstrating that Distal-less is necessary for their development. However, deletions in the upstream coding exon (Exon 2) produce losses or gains of brushes. A dissection of Exon 2 reveals that the likely mechanism for gains involves a deletion in an exon-splicing enhancer site that leads to exon skipping. Such contradictory phenotypes are also observed in butterflies, suggesting that mutations in the conserved upstream regions have the potential to generate phenotypic variability in insects that diverged 300 million years ago. Our results demonstrate the importance of Distal-less for the development of a novel abdominal appendage in insects and highlight how site-specific mutations in the same exon can produce contradictory phenotypes.
Distal-less has been repeatedly co-opted for the development of many novel traits. Here, we document its curious role in the development of a novel abdominal appendage (''sternite brushes'') in sepsid flies. CRISPR/Cas9 deletions in the homeodomain result in losses of sternite brushes, demonstrating that Distal-less is necessary for their development. However, deletions in the upstream coding exon (Exon 2) produce losses or gains of brushes. A dissection of Exon 2 reveals that the likely mechanism for gains involves a deletion in an exon-splicing enhancer site that leads to exon skipping. Such contradictory phenotypes are also observed in butterflies, suggesting that mutations in the conserved upstream regions have the potential to generate phenotypic variability in insects that diverged 300 million years ago. Our results demonstrate the importance of Distal-less for the development of a novel abdominal appendage in insects and highlight how site-specific mutations in the same exon can produce contradictory phenotypes.
New species from well-studied taxa such as Sepsidae (Diptera) are rarely described from localities that have been extensively explored and one may think that New York City belongs to this category. Yet, a new species of Themira (Diptera: Sepsidae) was recently discovered which is currently only known to reside in two of New York City’s largest urban parks. Finding a new species of Themira in these parks was all the more surprising because the genus was revised in 1998 and is not particularly species-rich (13 species). Its status is confirmed as a new species based on morphology, DNA sequences, and reproductive isolation tests with a closely related species, and is described as Themira
lohmanus Ang, sp. n. The species breeds on waterfowl dung and it is hypothesized that this makes the species rare in natural environments. However, it thrives in urban parks where the public feeds ducks and geese. The mating behavior of Themira
lohmanus was recorded and is similar to the behavior of its closest relative T.
biloba.
Male sexual ornaments often evolve rapidly and are thought to be costly, thus contributing to sexual size dimorphism. However, little is known about their developmental costs, and even less about costs associated with structural complexity. Here, we quantified the size and complexity of three morphologically elaborate sexually dimorphic male ornaments that starkly differ across sepsid fly species (Diptera: Sepsidae): (i) male forelegs range from being unmodified, like in most females, to being adorned with spines and large cuticular protrusions; (ii) the fourth abdominal sternites are either unmodified or are converted into complex
de novo
appendages; and (iii) male genital claspers range from small and simple to large and complex (e.g. bifurcated). We tracked the development of 18 sepsid species from egg to adult to determine larval feeding and pupal metamorphosis times of both sexes. We then statistically explored whether pupal and adult body size, ornament size and/or ornament complexity are correlated with sex-specific development times. Larval growth and foraging periods of male and female larvae did not differ, but the time spent in the pupal stage was
ca
5% longer for sepsid males despite emerging 9% smaller than females on average. Surprisingly, we found no evidence that sexual trait complexity prolongs pupal development beyond some effects of trait size. Evolving more complex traits thus does not incur developmental costs at least in this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.