We investigate the performance on phoneme categorization and phoneme and word segmentation of several selfsupervised learning (SSL) methods based on Contrastive Predictive Coding (CPC). Our experiments show that with the existing algorithms there is a trade off between categorization and segmentation performance. We investigate the source of this conflict and conclude that the use of context building networks, albeit necessary for superior performance on categorization tasks, harms segmentation performance by causing a temporal shift on the learned representations. Aiming to bridge this gap, we take inspiration from the leading approach on segmentation, which simultaneously models the speech signal at the frame and phoneme level, and incorporate multi-level modelling into Aligned CPC (ACPC), a variation of CPC which exhibits the best performance on categorization tasks. Our multi-level ACPC (mACPC) improves in all categorization metrics and achieves state-of-the-art performance in word segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.