Connective tissue growth factor (CTGF) is a newly described 38-kDa peptide mitogen for fibroblasts and a promoter of connective tissue deposition in the skin. The CTGF gene promotor contains a transforming growth factor-β1 (TGF-β1) response element. Because TGF-β1 expression is upregulated in several models of fibroproliferative lung disease, we asked whether CTGF is also upregulated in a murine lung fibrosis model and whether CTGF could mediate some of the fibrogenic effects associated with TGF-β1. A portion of the rat CTGF gene was cloned and used to show that primary isolates of both murine and human lung fibroblasts express CTGF mRNA in vitro. There was a greater than twofold increase in CTGF expression in both human and murine lung fibroblasts 2, 4, and 24 h after the addition of TGF-β1 in vitro. A bleomycin-sensitive mouse strain (C57BL/6) and a bleomycin-resistant mouse strain (BALB/c) were given bleomycin, a known lung fibrogenic agent. CTGF mRNA expression was upregulated in the sensitive, but not in the resistant, mouse strain after administration of bleomycin. In vivo differences in the CTGF expression between the two mouse strains were not due to an inherent inability of BALB/c lung fibroblasts to respond to TGF-β1 because fibroblasts from untreated BALB/c mouse lung upregulated their CTGF message when treated with TGF-β1 in vitro. These data demonstrate that CTGF is expressed in lung fibroblasts and may play a role in the pathogenesis of lung fibrosis.
The human arterial proteome can be viewed as a complex network whose architectural features vary considerably as a function of anatomic location and the presence or absence of atherosclerosis. The data suggest important reductions in mitochondrial protein abundance in early atherosclerosis and also identify a subset of plasma proteins that are highly predictive of angiographically defined coronary disease.
Because of its expression pattern and its potent effects on mesenchymal cells, platelet-derived growth factor (PDGF) has been implicated as an important factor in epithelial-mesenchymal cell interactions during normal lung development and in the pathogenesis of fibrotic lung disease. To further explore the role of PDGF in these processes, we have developed transgenic mice that express the PDGF-B gene from the lung-specific surfactant protein C (SPC) promoter. Adult SPC-PDGFB transgenic mice exhibited lung pathology characterized by enlarged airspaces, inflammation, and fibrosis. Emphysematous changes frequently occurred throughout the lung, but inflammation and fibrotic lesions were usually confined to focal areas. The severity of this phenotype varied significantly among individual mice within the same SPC-PDGFB transgenic lineage. A pathology similar to that observed in adult mice was noted in lungs from transgenic mice as young as 1 week of age. Neonatal transgenic mice exhibited enlarged saccules and thickened primary septa. Results of these studies indicated that overexpression of PDGF-B induced distinct abnormalities in the developing and adult lung and led to a complex phenotype that encompassed aspects of both emphysema and fibrotic lung disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.