CD28 provides an important costimulatory signal in T cell activation that regulates multiple cellular processes including proliferation and survival. Several signal transduction pathways are activated by CD28; however, the precise biochemical mechanism by which CD28 regulates T cell function remains controversial. Retroviral gene transfer into primary T cells from TCR-transgenic, CD28-deficient mice was used to determine the specific sequences within CD28 that determine function. Discrete regions of the cytoplasmic domain of CD28 were identified that differentially regulate T cell proliferation and induction of the anti-apoptotic protein Bcl-XL. Mutation of C-terminal proline residues abrogated the proliferative and cytokine regulatory features of CD28 costimulation while preserving Bcl-XL induction. Conversely, mutation of residues important in phosphatidylinositol 3-kinase activation partially inhibited proliferation but prevented induction of Bcl-XL. Thus the ability of CD28 to regulate proliferation and induction of Bcl-XL map to distinct motifs, suggesting independent signaling cascades modulate these biologic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.