The development of controllable and reproducible animal models of intracerebral hemorrhage (ICH) is essential for the systematic study of the pathophysiology and treatment of hemorrhagic stroke. In recent years, we have used a modified version of a murine ICH model to inject blood into mouse basal ganglia. According to our protocol, autologous blood is stereotactically infused in two stages into the right striatum to mimic the natural events of hemorrhagic stroke. Following ICH induction, animals demonstrate reproducible hematomas, brain edema formation and marked neurological deficits. Our technique has proven to be a reliable and reproducible means of creating ICH in mice in a number of acute and chronic studies. We believe that our model will serve as an ideal paradigm for investigating the complex pathophysiology of hemorrhagic stroke. The protocol for establishing this model takes about 2 h.
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease with great variability in disease severity and rate of progression. The need for a reliable, sensitive, and objective biomarker to track disease progression and response to therapy remains a great challenge in IPF clinical trials. Over the past decade, quantitative computed tomography (QCT) has emerged as an area of intensive research to address this need. We have gathered a group of pulmonologists, radiologists and scientists with expertise in this area to define the current status and future promise of this imaging technique in the evaluation and management of IPF. In this Pulmonary Perspective, we review the development and validation of six computer-based QCT methods and offer insight into the optimal use of an imaging-based biomarker as a tool for prognostication, prediction of response to therapy, and potential surrogate endpoint in future therapeutic trials.
The complement anaphylatoxin C3a contributes to injury after cerebral ischemia in mice. This study assesses the effect of C3a receptor antagonist (C3aRA) on leukocyte infiltration into the ischemic zone. Transient or permanent middle cerebral artery occlusion (MCAO) was induced in wild-type C57Bl/6 mice. Intraperitoneal C3aRA or vehicle was administered 45 mins before or 1 h after occlusion. Twenty-four hours after occlusion, we harvested brain tissue and purified inflammatory cells using flow cytometry. Soluble intercellular adhesion molecule (ICAM)-1 protein levels were assessed using enzyme-linked immunosorbent assays, and ICAM-1 and C3a receptor (C3aR) expression was confirmed via immunohistochemistry. In the transient MCAO model, animals receiving C3aRA showed smaller strokes, less upregulation of C3aR-positive granulocytes, and less ICAM-1 protein on endothelial cells than vehicle-treated animals; no significant differences in other inflammatory cell populations were observed. C3a receptor antagonist-treated and vehicle-treated animals showed no differences in stroke volume or inflammatory cell populations after permanent MCAO. These data suggest that blocking the binding of C3a to C3aR modulates tissue injury in reperfused stroke by inhibiting the recruitment of neutrophils to the ischemic zone. It further establishes antagonism of the C3a anaphylatoxin as a promising strategy for ameliorating injury after ischemia/reperfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.