SummaryBackgroundOverweight and obesity are increasing worldwide. To help assess their relevance to mortality in different populations we conducted individual-participant data meta-analyses of prospective studies of body-mass index (BMI), limiting confounding and reverse causality by restricting analyses to never-smokers and excluding pre-existing disease and the first 5 years of follow-up.MethodsOf 10 625 411 participants in Asia, Australia and New Zealand, Europe, and North America from 239 prospective studies (median follow-up 13·7 years, IQR 11·4–14·7), 3 951 455 people in 189 studies were never-smokers without chronic diseases at recruitment who survived 5 years, of whom 385 879 died. The primary analyses are of these deaths, and study, age, and sex adjusted hazard ratios (HRs), relative to BMI 22·5–<25·0 kg/m2.FindingsAll-cause mortality was minimal at 20·0–25·0 kg/m2 (HR 1·00, 95% CI 0·98–1·02 for BMI 20·0–<22·5 kg/m2; 1·00, 0·99–1·01 for BMI 22·5–<25·0 kg/m2), and increased significantly both just below this range (1·13, 1·09–1·17 for BMI 18·5–<20·0 kg/m2; 1·51, 1·43–1·59 for BMI 15·0–<18·5) and throughout the overweight range (1·07, 1·07–1·08 for BMI 25·0–<27·5 kg/m2; 1·20, 1·18–1·22 for BMI 27·5–<30·0 kg/m2). The HR for obesity grade 1 (BMI 30·0–<35·0 kg/m2) was 1·45, 95% CI 1·41–1·48; the HR for obesity grade 2 (35·0–<40·0 kg/m2) was 1·94, 1·87–2·01; and the HR for obesity grade 3 (40·0–<60·0 kg/m2) was 2·76, 2·60–2·92. For BMI over 25·0 kg/m2, mortality increased approximately log-linearly with BMI; the HR per 5 kg/m2 units higher BMI was 1·39 (1·34–1·43) in Europe, 1·29 (1·26–1·32) in North America, 1·39 (1·34–1·44) in east Asia, and 1·31 (1·27–1·35) in Australia and New Zealand. This HR per 5 kg/m2 units higher BMI (for BMI over 25 kg/m2) was greater in younger than older people (1·52, 95% CI 1·47–1·56, for BMI measured at 35–49 years vs 1·21, 1·17–1·25, for BMI measured at 70–89 years; pheterogeneity<0·0001), greater in men than women (1·51, 1·46–1·56, vs 1·30, 1·26–1·33; pheterogeneity<0·0001), but similar in studies with self-reported and measured BMI.InterpretationThe associations of both overweight and obesity with higher all-cause mortality were broadly consistent in four continents. This finding supports strategies to combat the entire spectrum of excess adiposity in many populations.FundingUK Medical Research Council, British Heart Foundation, National Institute for Health Research, US National Institutes of Health.
BackgroundThe smoking epidemic in Australia is characterised by historic levels of prolonged smoking, heavy smoking, very high levels of long-term cessation, and low current smoking prevalence, with 13% of adults reporting that they smoked daily in 2013. Large-scale quantitative evidence on the relationship of tobacco smoking to mortality in Australia is not available despite the potential to provide independent international evidence about the contemporary risks of smoking.MethodsThis is a prospective study of 204,953 individuals aged ≥45 years sampled from the general population of New South Wales, Australia, who joined the 45 and Up Study from 2006–2009, with linked questionnaire, hospitalisation, and mortality data to mid-2012 and with no history of cancer (other than melanoma and non-melanoma skin cancer), heart disease, stroke, or thrombosis. Hazard ratios (described here as relative risks, RRs) for all-cause mortality among current and past smokers compared to never-smokers were estimated, adjusting for age, education, income, region of residence, alcohol, and body mass index.ResultsOverall, 5,593 deaths accrued during follow-up (874,120 person-years; mean: 4.26 years); 7.7% of participants were current smokers and 34.1% past smokers at baseline. Compared to never-smokers, the adjusted RR (95% CI) of mortality was 2.96 (2.69–3.25) in current smokers and was similar in men (2.82 (2.49–3.19)) and women (3.08 (2.63–3.60)) and according to birth cohort. Mortality RRs increased with increasing smoking intensity, with around two- and four-fold increases in mortality in current smokers of ≤14 (mean 10/day) and ≥25 cigarettes/day, respectively, compared to never-smokers. Among past smokers, mortality diminished gradually with increasing time since cessation and did not differ significantly from never-smokers in those quitting prior to age 45. Current smokers are estimated to die an average of 10 years earlier than non-smokers.ConclusionsIn Australia, up to two-thirds of deaths in current smokers can be attributed to smoking. Cessation reduces mortality compared with continuing to smoke, with cessation earlier in life resulting in greater reductions.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-015-0281-z) contains supplementary material, which is available to authorized users.
Background Tobacco smoking is a leading cause of cardiovascular disease (CVD) morbidity and mortality. Evidence on the relation of smoking to different subtypes of CVD, across fatal and non-fatal outcomes, is limited. Methods A prospective study of 188,167 CVD- and cancer-free individuals aged ≥ 45 years from the Australian general population joining the 45 and Up Study from 2006 to 2009, with linked questionnaire, hospitalisation and death data up to the end of 2015. Hazard ratios (HRs) for hospitalisation with or mortality from CVD among current and past versus never smokers were estimated, including according to intensity and recency of smoking, using Cox regression, adjusting for age, sex, urban/rural residence, alcohol consumption, income and education. Population-attributable fractions were estimated. Results During a mean 7.2 years follow-up (1.35 million person-years), 27,511 (crude rate 20.4/1000 person-years) incident fatal and non-fatal major CVD events occurred, including 4548 (3.2) acute myocardial infarction (AMI), 3991 (2.8) cerebrovascular disease, 3874 (2.7) heart failure and 2311 (1.6) peripheral arterial disease (PAD) events. At baseline, 8% of participants were current and 34% were past smokers. Of the 36 most common specific CVD subtypes, event rates for 29 were increased significantly in current smokers. Adjusted HRs in current versus never smokers were as follows: 1.63 (95%CI 1.56–1.71) for any major CVD, 2.45 (2.22–2.70) for AMI, 2.16 (1.93–2.42) for cerebrovascular disease, 2.23 (1.96–2.53) for heart failure, 5.06 (4.47–5.74) for PAD, 1.50 (1.24–1.80) for paroxysmal tachycardia, 1.31 (1.20–1.44) for atrial fibrillation/flutter, 1.41 (1.17–1.70) for pulmonary embolism, 2.79 (2.04–3.80) for AMI mortality, 2.26 (1.65–3.10) for cerebrovascular disease mortality and 2.75 (2.37–3.19) for total CVD mortality. CVD risks were elevated at almost all levels of current smoking intensity examined and increased with smoking intensity, with HRs for total CVD mortality in current versus never smokers of 1.92 (1.11–3.32) and 4.90 (3.79–6.34) for 4–6 and ≥ 25 cigarettes/day, respectively. Risks diminished with quitting, with excess risks largely avoided by quitting before age 45. Over one third of CVD deaths and one quarter of acute coronary syndrome hospitalisations in Australia aged < 65 can be attributed to smoking. Conclusions Current smoking increases the risk of virtually all CVD subtypes, at least doubling the risk of many, including AMI, cerebrovascular disease and heart failure. Paroxysmal tachycardia is a newly identified smoking-related risk. Where comparisons are possible, smoking-associated relative risks for fatal and non-fatal outcomes are similar. Quitting reduces the risk substantially. In an established smoking epidemic, with declining and low current smoking prevalence, smoking accounts for a substantial proportion of premature CVD events. Electronic supplementary mater...
ObjectiveTo investigate the relationship between oral health and incident hospitalisation for ischaemic heart disease (IHD), heart failure (HF), ischaemic stroke and peripheral vascular disease (PVD) and all-cause mortality.DesignProspective population-based study of Australian men and women aged 45 years or older, who were recruited to the 45 and Up Study between January 2006 and April 2009; baseline questionnaire data were linked to hospitalisations and deaths up to December 2011. Study exposures include tooth loss and self-rated health of teeth and gums at baseline.SettingNew South Wales, Australia.ParticipantsIndividuals aged 45–75 years, excluding those with a history of cancer/cardiovascular disease (CVD) at baseline; n=172 630.Primary outcomesIncident hospitalisation for IHD, HF, ischaemic stroke and PVD and all-cause mortality.ResultsDuring a median follow-up of 3.9 years, 3239 incident hospitalisations for IHD, 212 for HF, 283 for ischaemic stroke and 359 for PVD, and 1908 deaths, were observed. Cox proportional hazards models examined the relationship between oral health indicators and incident hospitalisation for CVD and all-cause mortality, adjusting for potential confounding factors. All-cause mortality and incident CVD hospitalisation risk increased significantly with increasing tooth loss for all outcomes except ischaemic stroke (ptrend<0.05). In those reporting no teeth versus ≥20 teeth left, risks were increased for HF (HR, 95% CI 1.97, 1.27 to 3.07), PVD (2.53, 1.81 to 3.52) and all-cause mortality (1.60, 1.37 to 1.87). The risk of IHD, PVD and all-cause mortality (but not HF or ischaemic stroke) increased significantly with worsening self-rated health of teeth and gums (ptrend<0.05). In those reporting poor versus very good health of teeth and gums, risks were increased for IHD (1.19, 1.03 to 1.38), PVD (1.66, 1.13 to 2.43) and all-cause mortality (1.76, 1.50 to 2.08).ConclusionsTooth loss and, to a lesser extent, self-rated health of teeth and gums, are markers for increased risk of IHD, PVD and all-cause mortality. Tooth loss is also a marker for increased risk of HF.
In a prospective Australian population-based study linking questionnaire data from 2006–2009 with hospitalisation and death data to June 2010 for 95,038 men aged ≥45 years, Banks and colleagues found that more severe erectile dysfunction was associated with higher risk of cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.