Biallelic inactivation of cancer susceptibility gene BRCA1 leads to breast and ovarian carcinogenesis. Paradoxically, BRCA1 deficiency in mice results in early embryonic lethality, and similarly, lack of BRCA1 in human cells is thought to result in cellular lethality in view of BRCA1's essential function. To survive homozygous BRCA1 inactivation during tumorigenesis, precancerous cells must accumulate additional genetic alterations, such as p53 mutations, but this requirement for an extra genetic "hit" contradicts the two-hit theory for the accelerated carcinogenesis associated with familial cancer syndromes. Here, we show that heterozygous BRCA1 inactivation results in genomic instability in nontumorigenic human breast epithelial cells in vitro and in vivo. Using somatic cell gene targeting, we demonstrated that a heterozygous BRCA1 185delAG mutation confers impaired homology-mediated DNA repair and hypersensitivity to genotoxic stress. Heterozygous mutant BRCA1 cell clones also showed a higher degree of gene copy number loss and loss of heterozygosity in SNP array analyses. In BRCA1 heterozygous clones and nontumorigenic breast epithelial tissues from BRCA mutation carriers, FISH revealed elevated genomic instability when compared with their respective controls. Thus, BRCA1 haploinsufficiency may accelerate hereditary breast carcinogenesis by facilitating additional genetic alterations.
An oncogenic mutation (G49A:E17K) in the AKT1 gene has been described recently in human breast, colon, and ovarian cancers. The low frequency of this mutation and perhaps other selective pressures have prevented the isolation of human cancer cell lines that harbor this mutation thereby limiting functional analysis. Here, we create a physiologic in vitro model to study the effects of this mutation by using somatic cell gene targeting using the nontumorigenic human breast epithelial cell line, MCF10A. Surprisingly, knock in of E17K into the AKT1 gene had minimal phenotypic consequences and importantly, did not recapitulate the biochemical and growth characteristics seen with somatic cell knock in of PIK3CA hotspot mutations. These results suggest that mutations in critical genes within the PI3-kinase (PI3K) pathway are not functionally equivalent, and that other cooperative genetic events may be necessary to achieve oncogenic PI3K pathway activation in cancers that contain the AKT1 E17K mutation.
Using small palindromes to monitor meiotic double-strand-break-repair (DSBr) events, we demonstrate that two distinct classes of crossovers occur during meiosis in wild-type yeast. We found that crossovers accompanying 5:3 segregation of a palindrome show no conventional (i.e., positive) interference, while crossovers with 6:2 or normal 4:4 segregation for the same palindrome, in the same cross, do manifest interference. Our observations support the concept of a ''non''-interference class and an interference class of meiotic double-strand-break-repair events, each with its own rules for mismatch repair of heteroduplexes. We further show that deletion of MSH4 reduces crossover tetrads with 6:2 or normal 4:4 segregation more than it does those with 5:3 segregation, consistent with Msh4p specifically promoting formation of crossovers in the interference class. Additionally, we present evidence that an ndj1 mutation causes a shift of noncrossovers to crossovers specifically within the ''non''-interference class of DSBr events. We use these and other data in support of a model in which meiotic recombination occurs in two phases-one specializing in homolog pairing, the other in disjunction-and each producing both noncrossovers and crossovers. I N yeast, deletion of the meiosis-specific gene MSH4, which, despite its name, is said to have no involvement in mismatch repair (Ross-Macdonald and Roeder 1994), usually leaves residual crossovers, and these crossovers have reduced interference (Novak et al. 2001). In Caenorhabditis elegans, however, which is characterized by strong crossover interference as well as by cis-acting ''pairing centers'' that promote synapsis of homologous chromosomes (Dernburg et al. 1998;MacQueen et al. 2005;Phillips and Dernburg 2006), deletion of him-14, a homolog of MSH4, eliminates essentially all crossing over while apparently leaving intact the ability to repair meiotic double-strand breaks (Zalevsky et al. 1999). On the basis of these data, Zalevsky et al. (1999) suggested that yeast, and other creatures lacking pairing centers, have two kinds of crossing over, one of which is Msh4 independent, has little or no crossover interference, and serves to establish effective pairing of homologous chromosomes. Stahl et al. (2004) noted that the concept of two kinds of crossing over provides an explanation for the apparent correlation between the strength of interference and the fraction of crossovers that are Msh4 dependent in a given interval. Furthermore, Malkova et al. (2004), using a statistical analysis, which in the light of information presented here appears oversimplified, reported that the distribution of crossovers along the left arm of chromosome VII in wild-type yeast was better described by a two-kinds-of-crossover model than by the simple ''counting model'' for interference (Foss et al. 1993). More compelling support came from the phenotype of mms4 and mus81 deletions. Each of these mutations caused a reduction in crossing over but not in interference, while deletion of MMS4 a...
Tamoxifen is effective for treating estrogen receptor-alpha (ER) positive breast cancers. However, few molecular mediators of tamoxifen resistance have been elucidated. Here we describe a previously unidentified gene, MACROD2 that confers tamoxifen resistance and estrogen independent growth. We found MACROD2 is amplified and overexpressed in metastatic tamoxifen-resistant tumors. Transgene overexpression of MACROD2 in breast cancer cell lines results in tamoxifen resistance, whereas RNAi-mediated gene knock down reverses this phenotype. MACROD2 overexpression also leads to estrogen independent growth in xenograft assays. Mechanistically, MACROD2 increases p300 binding to estrogen response elements in a subset of ER regulated genes. Primary breast cancers and matched metastases demonstrate MACROD2 expression can change with disease evolution, and increased expression and amplification of MACROD2 in primary tumors is associated with worse overall survival. These studies establish MACROD2 as a key mediator of estrogen independent growth and tamoxifen resistance, as well as a potential novel target for diagnostics and therapy.breast cancer | tamoxifen | resistance | MACROD2 | ER positive T he selective estrogen receptor modulator (SERM) tamoxifen is a highly effective drug for the prevention and treatment of estrogen receptor-alpha (ER) positive breast cancers (1). However, resistance to this drug remains a clinically important problem. The molecular mediators of tamoxifen resistance have not been fully elucidated. In part, this is due to the heterogeneous nature of breast cancers, resulting in multiple mechanisms of resistance. For example, past studies have demonstrated that tamoxifen resistance is mediated by differential expression of nuclear hormone receptor coregulators (2, 3), growth factor signaling crosstalk (4-7), regulation of microRNAs (8), cyclin dependent kinases (CKDs) (9), CDK inhibitors (10, 11), and more recently, acquired somatic mutations and alterations in ER (12-17). Further insight into the molecular mediators of tamoxifen and hormone therapy resistance would have great impact on the ability to target genes and pathways that could overcome drug resistance and lead to improved clinical outcomes.In this study we describe a previously unidentified gene, MACROD2, which is amplified and overexpressed in a subset of breast cancers. MACROD2 belongs to a family of genes containing a macro domain, an evolutionarily conserved protein motif (18), whose functional role until recently has been unclear. Studies have demonstrated that MACROD2 deacetylates O-acetyl-ADP ribose, a signaling molecule generated by the deacetylation of acetylated lysine residues in histones and other proteins (19). More recent work demonstrates that MACRO domain containing proteins are involved with mono-ADP ribosylation, and can regulate cell signaling pathways and modify proteins involved with gene transcription (20). Interestingly, MACROD1 (LRP16) has been implicated in modulating ER and androgen receptor (AR) signaling in prio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.