Background: Nontuberculous mycobacteria (NTM) treatment constitutes a macrolide-based antibiotic regimen in combination with aminoglycosides for Rapid-Growing mycobacteria (RGM), and rifampicin for Slow-Growing mycobacteria (SGM). Mutations in the anti-NTM drug target regions promote NTM evolution to mutant strains that are insusceptible to NTM drugs leading to treatment failure. We, therefore, described the mutation patterns of anti-NTM drug target genes including rrl, rrs, and rpoB in NTM isolates from Kenya. Methods: We carried out a cross-sectional study that included 122 NTM obtained from the sputum of symptomatic tuberculosis-negative patients in Kenya. All the 122 NTM underwent targeted sequencing of the rrl gene. The 54 RGM were also sequenced for rrs, and the 68 SGM were sequenced for rpoB genes using ABI 3730XL analyzer. The obtained sequences were aligned to their wild-type reference sequences for each gene using Geneious then mutations were identified. Pearson chi-square at 95% confidence interval tested the association of NTM to mutation patterns for each gene. Results: Twenty-eight (23%) of the NTM harbored mutations associated with resistance to at least one of the macrolide-based therapy antibiotics. Twelve (10.4%) NTM comprising 7(58.3%) of RGM and 5(41.7%) of SGM had mutations in the rrl gene. For ten (83.3%) NTM, mutations were found at position 2058, while for two (16.6%) NTM, mutations were found at position 2059. Six (11.1%) of the 54 RGM exhibited mutations in the aminoglycoside target gene rrs at location 1408. Ten (14.7%) of the 68 SGM harbored mutations in the rpoB gene with 40 percent having mutations at codon 531. Conclusion: We demonstrated a significant level of mutations associated with drug resistance for macrolides, aminoglycosides, and rifampicin in NTM isolated from symptomatic TB negative patients in Kenya.
Background: Non-tuberculous mycobacteria (NTM) treatment constitutes a macrolide-based antibiotic regimen in combination with aminoglycosides for Rapid-Growing Mycobacteria (RGM), and rifampicin for Slow-Growing Mycobacteria (SGM). Mutations in the anti-NTM drug target regions promote NTM evolution to mutant strains that are insusceptible to NTM drugs leading to treatment failure. We, therefore, described the mutation patterns of anti-NTM drug target genes including rrl, rrs, and rpoB in NTM isolates from Kenya. Methods: We carried out a cross-sectional study that included 122 NTM obtained from the sputum of symptomatic tuberculosis-negative patients in Kenya. All 122 NTM underwent targeted sequencing of the rrl gene. The 54 RGM were also sequenced for rrs, and the 68 SGM were sequenced for rpoB genes using ABI 3730XL analyzer. The obtained sequences were aligned to their wild-type reference sequences for each gene using Geneious then mutations were identified. Pearson chi-square at a 95% confidence interval tested the association of NTM to mutation patterns for each gene. Results: NTM harboring mutations associated with resistance to at least one of the antibiotics used in the macrolide-based therapy were 23% (28/122). Of these NTM, 10.4% (12/122) had mutations in the rrl gene with 58.3% (7/12) comprising RGM and 41.7% (5/12) being SGM. Mutation at position 2058 (A2058G, A2058C, A2058T) of the rrl gene was seen for 83.3% (10/12) of NTM, while 16.6% (2/12) harbored a A2059G mutation. Of the 54 RGM included for rrs characterization, 11.1% (6/54) exhibited mutations at position 1408(A1408G), while 14.7% (10/68) of the SGM had mutations in the rpoB gene at positions S531W, S531L, S531Y, F506L, E509H with M.gastri having multiple mutations at positions D516V, H526D and, S531F. Conclusion: We demonstrated a significant level of mutations associated with drug resistance for macrolides, aminoglycosides, and rifampicin in NTM isolated from symptomatic TB negative patients in Kenya.
Background: Nontuberculous mycobacteria (NTM) treatment constitutes a macrolide-based antibiotic regimen in combination with aminoglycosides for Rapid-Growing mycobacteria (RGM), and rifampicin for Slow-Growing mycobacteria (SGM). Mutations in the anti-NTM drug target regions promote NTM evolution to mutant strains that are insusceptible to NTM drugs leading to treatment failure. We, therefore, described the mutation patterns of anti-NTM drug target genes including rrl, rrs, and rpoB in NTM isolates from Kenya. Methods: We carried out a cross-sectional study that included 122 NTM obtained from the sputum of symptomatic tuberculosis-negative patients in Kenya. All the 122 NTM underwent targeted sequencing of the rrl gene. The 54 RGM were also sequenced for rrs, and the 68 SGM were sequenced for rpoB genes using ABI 3730XL analyzer. The obtained sequences were aligned to their wild-type reference sequences for each gene using Geneious then mutations were identified. Pearson chi-square at 95% confidence interval tested the association of NTM to mutation patterns for each gene. Results: Twenty-eight (23%) of the NTM were resistant to at least one of the antibiotics used in the macrolide-based treatment. Twelve (10.4%) of NTM were macrolide resistant, with 7(58.3%) of RGM and 5(41.7%) of SGM having mutations in the rrl gene. For ten (83.3%) NTM, mutations were found at position 2058, while for two (16.6%) NTM, mutations were found at position 2059. Six (11.1%) of the 54 RGM exhibited mutations in the aminoglycoside target gene rrs at location 1408. Ten (14.7%) of the 68 SGM were resistant to rifampicin, with 40 percent having mutations at codon 531 in the rpoB gene. Conclusion: We demonstrated a significant level of drug resistance for macrolides, aminoglycosides and rifampicin in NTM isolated from symptomatic TB negative patients in Kenya.
Background: Nontuberculous mycobacteria (NTM) treatment constitutes a macrolide-based antibiotic regimen in combination with aminoglycosides for Rapid-Growing mycobacteria (RGM), and rifampicin for Slow-Growing mycobacteria (SGM). Mutations in the anti-NTM drug target regions promote NTM evolution to mutant strains that are insusceptible to NTM drugs leading to treatment failure. We, therefore, described the mutation patterns of anti-NTM drug target genes including rrl, rrs, and rpoB in NTM isolates from Kenya. Methods: We carried out a cross-sectional study that included 122 NTM obtained from the sputum of symptomatic tuberculosis-negative patients in Kenya. All the 122 NTM underwent targeted sequencing of the rrl gene. The 54 RGM were also sequenced for rrs, and the 68 SGM were sequenced for rpoB genes using ABI 3730XL analyzer. The obtained sequences were aligned to their wild-type reference sequences for each gene using Geneious then mutations were identified. Pearson chi-square at 95% confidence interval tested the association of NTM to mutation patterns for each gene. Results: Twenty-eight (23%) of the NTM were resistant to at least one of the antibiotics used in the macrolide-based treatment. Twelve (10.4%) of NTM were macrolide resistant, with 7(58.3%) of RGM and 5(41.7%) of SGM having mutations in the rrl gene. For ten (83.3%) NTM, mutations were found at position 2058, while for two (16.6%) NTM, mutations were found at position 2059. Six (11.1%) of the 54 RGM exhibited mutations in the aminoglycoside target gene rrs at location 1408. Ten (14.7%) of the 68 SGM were resistant to rifampicin, with 40 percent having mutations at codon 531 in the rpoB gene. Conclusion: We demonstrated a significant level of drug resistance for macrolides, aminoglycosides and rifampicin in NTM isolated from symptomatic TB negative patients in Kenya.
Background: Nontuberculous mycobacteria (NTM) treatment constitutes a macrolide-based antibiotic regimen in combination with aminoglycosides for Rapid-Growing mycobacteria (RGM), and rifampicin for Slow-Growing mycobacteria (SGM). Mutations in the anti-NTM drug target regions promote NTM evolution to mutant strains that are insusceptible to NTM drugs leading to treatment failure. We, therefore, described the mutation patterns of anti-NTM drug target genes including rrl, rrs, and rpoB in NTM isolates from Kenya. Methods: We carried out a cross-sectional study that included 122 NTM obtained from the sputum of symptomatic tuberculosis-negative patients in Kenya. All 122 NTM underwent targeted sequencing of the rrl gene. The 54 RGM were also sequenced for rrs, and the 68 SGM were sequenced for rpoB genes using ABI 3730XL analyzer. The obtained sequences were aligned to their wild-type reference sequences for each gene using Geneious then mutations were identified. Pearson chi-square at a 95% confidence interval tested the association of NTM to mutation patterns for each gene. Results: Twenty-eight (23%) of the NTM harbored mutations associated with resistance to at least one of the macrolide-based therapy antibiotics. Twelve (10.4%) NTM comprising 7(58.3%) of RGM and 5(41.7%) of SGM had mutations in the rrl gene. For ten (83.3%) NTM, mutations were found at position 2058, while for two (16.6%) NTM, mutations were found at position 2059. Six (11.1%) of the 54 RGM exhibited mutations in the aminoglycoside target gene rrs at location 1408. Ten (14.7%) of the 68 SGM harbored mutations in the rpoB gene with 40 percent having mutations at codon 531. Conclusion: We demonstrated a significant level of mutations associated with drug resistance for macrolides, aminoglycosides, and rifampicin in NTM isolated from symptomatic TB negative patients in Kenya.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.