We present a method whereby an embodied agent using visual perception can efficiently create a model of a local indoor environment from its experience of moving within it. Our method uses motion cues to compute likelihoods of indoor structure hypotheses, based on simple, generic geometric knowledge about points, lines, planes, and motion. We present a single-image analysis, not to attempt to identify a single accurate model, but to propose a set of plausible hypotheses about the structure of the environment from an initial frame. We then use data from subsequent frames to update a Bayesian posterior probability distribution over the set of hypotheses. The likelihood function is efficiently computable by comparing the predicted location of point features on the environment model to their actual tracked locations in the image stream. Our method runs in real-time, and it avoids the need of extensive prior training and the Manhattan-world assumption, which makes it more practical and efficient for an intelligent robot to understand its surroundings compared to most previous scene understanding methods. Experimental results on a collection of indoor videos suggest that our method is capable of an unprecedented combination of accuracy and efficiency.
In this paper, we present the PerceptIn Robotics Vision System (PIRVS) system, a visual-inertial computing hardware with embedded simultaneous localization and mapping (SLAM) algorithm. The PIRVS hardware is equipped with a multi-core processor, a global-shutter stereo camera, and an IMU with precise hardware synchronization. The PIRVS software features a novel and flexible sensor fusion approach to not only tightly integrate visual measurements with inertial measurements and also to loosely couple with additional sensor modalities. It runs in real-time on both PC and the PIRVS hardware. We perform a thorough evaluation of the proposed system using multiple public visual-inertial datasets. Experimental results demonstrate that our system reaches comparable accuracy of state-of-the-art visual-inertial algorithms on PC, while being more efficient on the PIRVS hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.