Insects perform takeoffs from a nearly unquantifiable number of surface permutations and many use their legs to initiate upward movement prior to the onset of wingbeats, including the mosquito. In this study we examine the unprovoked pre-takeoff mechanics of Aedes aegypti mosquitoes from two surfaces of contrasting roughness, one with roughness similar to polished glass and the other comparable to the human forearm. Using high-speed videography, we find mosquitos exhibit two distinct leg actions prior to takeoff, the widely observed push and a previously undocumented leg-strike, where one of the rearmost legs is raised and strikes the ground. Across 106 takeoff sequences we observe a greater incidence of leg-strikes from the smoother surface, and rationalize this observation by comparing the characteristic size of surface features on the mosquito tarsi and each test surface. Measurements of pre-takeoff kinematics reveal both strategies remain under the mechanosensory detection threshold of mammalian hair and produce nearly identical vertical body velocities. Lastly, we develop a model that explicates the measured leg velocity of striking legs utilized by mosquitoes, 0.59 m s −1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.