This paper addresses the Volume dimension of Big Data. It presents a preliminary work on finding segments of retailers from a large amount of Electronic Funds Transfer at Point Of Sale (EFTPOS) transaction data. To the best of our knowledge, this is the first time a work on Big EFTPOS Data problem has been reported. A data reduction technique using the RFM (Recency, Frequency, Monetary) analysis as applied to a large data set is presented. Ways to optimise clustering techniques used to segment the big data set through data partitioning and parallelization are explained.Preliminary analysis on the segments of the retailers output from the clustering experiments demonstrates that further drilling down into the retailer segments to find more insights into their business behaviours is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.