The objective of this work is to develop and characterize polymeric nanoparticles with core–shell morphology through miniemulsion polymerization combined with seeded emulsion polymerization, aiming at the application in the treatment of vascular tumors via intravascular embolization. The synthesis of the core–shell nanocomposites was divided into two main steps: (i) Formation of the core structure, consisting of poly(methyl methacrylate)/magnetic oxide coated with oleic acid (OM-OA) via miniemulsion and (ii) shell structure produced through seeded emulsion polymerization of vinyl pivalate. Nanocomposites containing about 8 wt.% of OM-OA showed high colloidal stability, mean diameter of 216.8 nm, spherical morphology, saturation magnetization (Ms) of 4.65 emu·g−1 (57.41 emu·g−1 of Fe3O4), preserved superparamagnetic behavior and glass transition temperature (Tg) of 111.8 °C. TEM micrographs confirmed the obtaining of uniformly dispersed magnetic nanoparticles in the PMMA and that the core–shell structure was obtained by seeded emulsion with Ms of 1.35 emu·g−1 (56.25 emu·g−1 of Fe3O4) and Tg of 114.7 °C. In vitro cytotoxicity assays against murine tumor of melanoma (B16F10) and human Keratinocytes (HaCaT) cell lines were carried out showing that the core–shell magnetic polymeric materials (a core, consisting of poly(methyl methacrylate)/Fe3O4 and, a shell, formed by poly(vinyl pivalate)) presented high cell viabilities for both murine melanoma tumor cell lines, B16F10, and human keratinocyte cells, HaCaT.
This work addresses a comparative study focused on the synthesis of alkyd resins from different renewable resources such as chia, castor and palm vegetable oils through the alcoholysis–polycondensation process. The formed alkyd resins are analyzed by Fourier transform infrared (FTIR), 1H NMR, and 13C NMR. Besides, intrinsic viscosity and gel permeation chromatography (GPC) assays are conducted to evaluate the differences between the obtained resins focusing on their molecular weight and physicochemical properties. FTIR shows a satisfactory conversion from vegetable oils to alkyd resins. Both 1H NMR and 13C NMR indicate that alkyd resins are successfully synthesized. The values for molecular‐weight dispersity (ÐM) obtained for the resins are 2.3, 1.3, and 1.7 from chia, palm, and crude castor, along with the weight‐average molecular weight (Mw) of 4516, 1025, and 2451 g mol−1, respectively. The chia alkyd resin shows a 571.92 cP and is the highest viscosity obtained. It is also observed that an increase in phthalic anhydride can increase the molecular weight of the alkyd resin. This comparative study indicates that chia oil alkyd resin has enormous potential to be employed as a surface coating agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.