Current climate change exacerbates the environmental restrictions on temperate species inhabiting low latitude edges of their geographical ranges. We examined how temperature variations due to current and future climate change are likely to affect populations' persistence of stream-dwelling brown trout Salmo trutta at the vulnerable southern periphery of its range. Analysis of 33 years of air temperature data by time-series models indicated a significant upward trend and a pronounced shift in air temperature around 1986-1987. This warming is associated with an ongoing population decline of brown trout, most likely caused by a loss of suitable thermal habitat in lower latitudes since the 1980s. Population decrease may not be attributed to physical habitat modification or angler pressure, as carrying capacity remained stable and populations were not overexploited. We developed regional temperature models, which predicted that unsuitable thermal habitat for brown trout increased by 93% when comparing climate conditions between 1975-1986 and 1993-2004. Predictions from climate envelope models showed that current climate change may be rendering unsuitable 12% of suitable thermal habitat each decade, resulting in an overall population decrease in the lower reaches of around 6% per year. Furthermore, brown trout catches markedly decreased 20% per year. Projections of thermal habitat loss under the ecologically friendly B2 SRES scenario showed that brown trout may lose half of their current suitable habitat within the study area by 2040 and become almost extinct by 2100. In parallel to the upstream movement of brown trout thermal habitat, warm water species are increasing their relative abundance in salmonid waters. Empirical evidence was provided of how current climate change threatens some of the most healthy native brown trout populations in Southern Europe and how forthcoming climate change is expected to further decrease the conservation status of the species.
Freshwater ecosystems constitute only a small fraction of the planet's water resources, yet support much of its diversity, with freshwater fish accounting for more species than birds, mammals, amphibians or reptiles. Fresh waters are, however, particularly vulnerable to anthropogenic impacts, including habitat loss, climate and land use change, pollution and biological invasions. This environmental degradation, combined with unprecedented rates of biodiversity change, highlights the importance of robust and replicable programmes to monitor freshwater fish. Such monitoring programmes can have diverse aims, including confirming the presence of a single species (e.g., early detection of alien species), tracking changes in the abundance of threatened species, or documenting long‐term temporal changes in entire communities. Irrespective of their motivation, monitoring programmes are only fit for purpose if they have clearly articulated aims and collect data that can meet those aims. This review, therefore, highlights the importance of identifying the key aims in monitoring programmes and outlines the different methods of sampling freshwater fish that can be used to meet these aims. We emphasize that investigators must address issues around sampling design, statistical power, species’ detectability, taxonomy and ethics in their monitoring programmes. Additionally, programmes must ensure that high‐quality monitoring data are properly curated and deposited in repositories that will endure. Through fostering improved practice in freshwater fish monitoring, this review aims to help programmes improve understanding of the processes that shape the Earth's freshwater ecosystems and help protect these systems in face of rapid environmental change.
Ayllón D, Almodóvar A, Nicola GG, Elvira B. Ontogenetic and spatial variations in brown trout habitat selection. Ecology of Freshwater Fish 2010: 19: 420–432. © 2010 John Wiley & Sons A/S Abstract – Habitat quality and quantity determine many biological processes and traits that directly affect the population dynamics of stream fishes. Understanding how habitat selection is adjusted to different ecological conditions is essential to improve predictive modelling of population dynamics. We describe brown trout Salmo trutta summer habitat selection patterns through univariate and multivariate habitat selection functions across defined river reach typologies. We sampled 44 sites and performed a principal component analysis that defined eight reach types differing in both local site and catchment‐scale physical features. We observed ontogenetic changes in habitat selection, as trout preferred deeper and slower flowing water as they increased in size. Likewise, selectivity for different types of structural habitat elements changed through ontogeny. Both patterns were consistent across reach types. Moreover, we detected spatial variations in habitat selection patterns within age‐classes among different reach types. Our results indicate that brown trout is a habitat generalist and suggest that spatial variations in habitat selection patterns are driven by physical and environmental factors operating at multiple spatial scales.
Should a species be translocated? Uncertainty regarding the necessity and feasibility of many translocations complicates answering this question. Here, we review translocation projects, both published and unpublished. Our results indicate that most projects (1) addressed fewer than half of the basic criteria established for translocations and (2) were either unjustifiable from a conservation perspective or inadequately designed to guarantee success or preclude negative consequences. We propose a hierarchical decision‐making system – an explicit method that integrates existing guidelines, thereby covering a key gap in conservation science – to reduce ambiguity when deciding whether to implement a given translocation project. This method will improve the likelihood of success in translocation projects and contribute to the efficient use of the limited resources available for these conservation efforts.
1.A comprehensive analysis was carried out on the effects of stocking on the genetic structure of Iberian brown trout evolutionary lineages. Introgression and genetic diversity were estimated from allozyme results of 307 populations based on own data (180) and available literature (127). Stocking records, angling regulations and environmental features related to hatchery trout performance were also analysed to determine the underlying mechanisms of the introgression effects. 2. Fifty per cent of analysed populations showed introgression by genes of hatchery origin. The mean introgression estimated by the single locus approachŜ was 0.134. An increment of both heterozygosity and polymorphism was observed when introgression increased in stream-dwelling populations, which could finally produce a homogenisation of the genetic structure of populations and a decrease of the species' genetic diversity. 3. Introgression rate varied among Iberian evolutionary lineages (Evolutionary Significant Units), and was correlated with the stocking effort, except for the North Atlantic basins. The lack of adaptations for migratory behaviour in hatchery trout could explain the low impact of stocking in North Atlantic rivers where anadromous populations occur. 4. Angling regulation did not seem to influence the survival of hatchery trout. Introgression tends to be higher in heavily stocked localities with fertile waters and stable discharge, which may favour the performance of hatchery trout. 5. Trout management must be based on increasing population size by means of habitat improvement and sustainability of naturally reproducing wild stocks through appropriate angling regulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.