Mesenchymal stromal cells (MSCs) are self-renewing, culture-expandable adult stem cells that have been isolated from a variety of tissues, and possess multipotent differentiation capacity, immunomodulatory properties, and are relatively non-immunogenic. Due to this unique set of characteristics, these cells have attracted great interest in the field of regenerative medicine and have been shown to possess pronounced therapeutic potential in many different pathologies. MSCs' mode of action involves a strong paracrine component resulting from the high levels of bioactive molecules they secrete in response to the local microenvironment. For this reason, MSCs' secretome is currently being explored in several clinical contexts, either using MSC-conditioned media (CM) or purified MSC-derived extracellular vesicles (EVs) to modulate tissue response to a wide array of injuries. Rather than being a constant mixture of molecular factors, MSCs' secretome is known to be dependent on the diverse stimuli present in the microenvironment that MSCs encounter. As such, the composition of the MSCs' secretome can be modulated by preconditioning the MSCs during in vitro culture. This manuscript reviews the existent literature on how preconditioning of MSCs affects the therapeutic potential of their secretome, focusing on MSCs' immunomodulatory and regenerative features, thereby providing new insights for the therapeutic use of MSCs' secretome.
This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Resolution of intervertebral disc (IVD) degeneration-associated inflammation is a prerequisite for tissue regeneration and could possibly be achieved by strategies ranging from pharmacological to cell-based therapies. In this study, a proinflammatory disc organ culture model was established. Bovine caudal disc punches were needle punctured and additionally stimulated with lipopolysaccharide (10 μg/mL) or interleukin-1β (IL-1β, 10-100 ng/mL) for 48 h. Two intradiscal therapeutic approaches were tested: (i) a nonsteroidal anti-inflammatory drug, diclofenac (Df) and (ii) human mesenchymal stem/stromal cells (MSCs) embedded in an albumin/hyaluronan hydrogel. IL-1β-treated disc organ cultures showed a statistically significant upregulation of proinflammatory markers (IL-6, IL-8, prostaglandin E2 [PGE2]) and metalloproteases (MMP1, MMP3) expression, while extracellular matrix (ECM) proteins (collagen II, aggrecan) were significantly downregulated. The injection of the anti-inflammatory drug, Df, was able to reduce the levels of proinflammatory cytokines and MMPs and surprisingly increase ECM protein levels. These results point the intradiscal application of anti-inflammatory drugs as promising therapeutics for disc degeneration. In parallel, the immunomodulatory role of MSCs on this model was also evaluated. Although a slight downregulation of IL-6 and IL-8 expression could be found, the variability among the five donors tested was high, suggesting that the beneficial effect of these cells on disc degeneration needs to be further evaluated. The proinflammatory/degenerative IVD organ culture model established can be considered a suitable approach for testing novel therapeutic drugs, thus reducing the number of animals in in vivo experimentation. Moreover, this model can be used to address the cellular and molecular mechanisms that regulate inflammation in the IVD and their implications in tissue degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.