Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core-corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core-forming metalloblock represent a synthetic tool that can be used to generate complex and hierarchical micelle architectures from diblock copolymers. The use of platelet micelles as initiators enables the formation of scarf-like architectures in which cylindrical micelle tassels of controlled length are grown from specific crystal faces. A similar process enables the fabrication of brushes of cylindrical micelles on a crystalline homopolymer substrate. Living polymerizations driven by heteroepitaxial growth can also be accomplished and are illustrated by the formation of tri- and pentablock and scarf architectures with cylinder-cylinder and platelet-cylinder connections, respectively, that involve different core-forming metalloblocks.
Assemblies of polylactide-based amphiphiles in alcohols are shown to give unprecedented shape selectivity based on unimer solubility, leading to the formation of large uniform 2D diamond-shaped platelets, up to several microns in size.
The fabrication of monodisperse nanostructures of highly controlled size and morphology with spatially distinct functional regions is a current area of high interest in materials science. Achieving this control directly in a biologically relevant solvent, without affecting cell viability, opens the door to a wide range of biomedical applications, yet this remains a significant challenge. Herein, we report the preparation of biocompatible and biodegradable poly(ε-caprolactone) 1D (cylindrical) and 2D (platelet) micelles in water and alcoholic solvents via crystallization-driven self-assembly. Using epitaxial growth in an alcoholic solvent, we show exquisite control over the dimensions and dispersity of these nanostructures, allowing access to uniform morphologies and predictable dimensions based on the unimer-to-seed ratio. Furthermore, for the first time, we report epitaxial growth in aqueous solvent, achieving precise control over 1D nanostructures in water, an essential feature for any relevant biological application. Exploiting this further, a strong, biocompatible and fluorescent hydrogel was obtained as a result of living epitaxial growth in aqueous solvent and cell culture medium. MC3T3 and A549 cells were successfully encapsulated, demonstrating high viability (>95% after 4 days) in these novel hydrogel materials.
One-dimensional micelles formed by the self-assembly of crystalline-coil poly(ferrocenyldimethylsilane) (PFS) block copolymers exhibit self-seeding behavior when solutions of short micelle fragments are heated above a certain temperature and then cooled back to room temperature. In this process, a fraction of the fragments (the least crystalline fragments) dissolves at elevated temperature, but the dissolved polymer crystallizes onto the ends of the remaining seed fragments upon cooling. This process yields longer nanostructures (up to 1 μm) with uniform width (ca. 15 nm) and a narrow length distribution. In this paper, we describe a systematic investigation of factors that affect the self-seeding behavior of PFS block copolymer micelle fragments. For PI(1000)-PFS(50) (the subscripts refer to the number average degree of polymerization) in decane, these factors include the presence of a good solvent (THF) for PFS and the effect of annealing the fragments prior to the self-seeding experiments. THF promoted the dissolution of the micelle fragments, while preannealing improved their stability. We also extended our experiments to other PFS block copolymers with different corona-forming blocks. These included PI(637)-PFS(53) in decane, PFS(60)-PDMS(660) in decane (PDMS = polydimethylsiloxane), and PFS(30)-P2VP(300) in 2-propanol (P2VP = poly(2-vinylpyridine)). The most remarkable result of these experiments is our finding that the corona-forming chain plays an important role in affecting how the PFS chains crystallize in the core of the micelles and, subsequently, the range of temperatures over which the micelle fragments dissolve. Our results also show that self-seeding is a versatile approach to generate uniform PFS fiber-like nanostructures, and in principle, the method should be extendable to a wide variety of crystalline-coil block copolymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.