Slow waves determine frequency and propagation characteristics of contractions in the small intestine, yet little is known about mechanisms of slow wave regulation. We propose a role for intracellular Ca(2+), inositol 1,4,5,-trisphosphate (IP(3))-sensitive Ca(2+) release, and sarcoplasmic reticulum (SR) Ca(2+) content in the regulation of slow wave frequency because 1) 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, a cytosolic Ca(2+) chelator, reduced the frequency or abolished the slow waves; 2) thapsigargin and cyclopiazonic acid (CPA), inhibitors of SR Ca(2+)-ATPase, decreased slow wave frequency; 3) xestospongin C, a reversible, membrane-permeable blocker of IP(3)-induced Ca(2+) release, abolished slow wave activity; 4) caffeine and phospholipase C inhibitors (U-73122, neomycin, and 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate) inhibited slow wave frequency; 5) in the presence of CPA or thapsigargin, stimulation of IP(3) synthesis with carbachol, norepinephrine, or phenylephrine acting on alpha(1)-adrenoceptors initially increased slow wave frequency but thereafter increased the rate of frequency decline, 6) thimerosal, a sensitizing agent of IP(3) receptors increased slow wave frequency, and 7) ryanodine, a selective modulator of Ca(2+)-induced Ca(2+) release, had no effect on slow wave frequency. In summary, these data are consistent with a role of IP(3)-sensitive Ca(2+) release and the rate of SR Ca(2+) refilling in regulation of intestinal slow wave frequency.