Natural gas hydrates are a potential source of energy and may play a role in climate change and geological hazards. Most natural gas hydrate appears to be in the form of 'structure I', with methane as the trapped guest molecule, although 'structure II' hydrate has also been identified, with guest molecules such as isobutane and propane, as well as lighter hydrocarbons. A third hydrate structure, 'structure H', which is capable of trapping larger guest molecules, has been produced in the laboratory, but it has not been confirmed that it occurs in the natural environment. Here we characterize the structure, gas content and composition, and distribution of guest molecules in a complex natural hydrate sample recovered from Barkley canyon, on the northern Cascadia margin. We show that the sample contains structure H hydrate, and thus provides direct evidence for the natural occurrence of this hydrate structure. The structure H hydrate is intimately associated with structure II hydrate, and the two structures contain more than 13 different hydrocarbon guest molecules. We also demonstrate that the stability field of the complex gas hydrate lies between those of structure II and structure H hydrates, indicating that this form of hydrate is more stable than structure I and may thus potentially be found in a wider pressure-temperature regime than can methane hydrate deposits.
A new vapor generation technique utilizing UV irradiation coupled with atomic absorption for the determination of selenium in aqueous solutions is described. In the presence of low molecular weight organic acid solutions, inorganic selenium(IV) is converted by UV irradiation to volatile selenium species, which are then rapidly transported to a heated quartz tube atomizer for detection by atomic absorption spectrometry. Optimum conditions for photochemical vapor generation and interferences from concomitant elements were investigated. Identification of the volatile products using cryotrapping GC/MS analysis revealed that inorganic selenium(IV) is converted to volatile selenium hydride, selenium carbonyl, dimethyl selenide, and diethyl selenide in the presence of formic, acetic, propionic, and malonic acids, respectively. In acetic acid solution, the efficiency of generation was estimated to be 50 +/- 10%. No interference from Ni(2+) and Co(2+) at concentrations of 500 and 100 mg L(-)(1), respectively, was evident. A detection limit of 2.5 microg L(-)(1) and a relative sensitivity of 1.2 microg L(-)(1) (1% absorption) with a precision of 1.2% (RSD, n = 11) at 50 microg L(-)(1) were obtained.
/npsi/ctrl?action=rtdoc&an=8896355&lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=8896355&lang=fr READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
A method is described for the determination of ephedrine (E) and pseudoephedrine (PE) and their metabolites norephedrine (NE), norpseudoephedrine (NPE), methylephedrine (ME), and methylpseudoephedrine (MPE) alkaloids in natural health products by flow injection-electrospray ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry (FI-ESI-FAIMS-MS). The determination of the six alkaloids requires the separation of diastereomic pairs of E-PE, NE-NPE, and ME-MPE. FAIMS was able to resolve/separate these isomeric pairs based on their gas-phase ion mobility differences. The FAIMS-based separation and detection approach has been tested on over-the-counter diet pills. Following the extraction of the tablets, either by pressurized fluid extraction developed in-house or with sonication, the ephedra alkaloids were quantified using a modified isotope dilution approach. Detection limits for the alkaloids ranged from 0.1 to 3 ng/mL, and a linear range of at least 2 orders of magnitude was observed for the six analytes. The throughput of the current configuration of the FI-ESI-FAIMS-MS system is 2 min/sample, which is significantly higher than conventional chromatographic approaches. The developed FI-ESI-FAIMS-MS method has been compared with a conventional LC-UV analysis, and good agreement has been found for the major alkaloids.
In the presence of low-molecular-weight organic acids, such as formic, acetic, and propionic, inorganic nickel salts in aqueous solutions are converted to the volatile tetracarbonyl by UV irradiation. Experiments were performed using a flow-through photoreactor, consisting of a 6 m length polytetrafluoroethylene tubing wrapped around a low-pressure mercury vapor UV lamp (254 nm, 15 W). The efficiency of transformation was estimated to be 95%. As no carbon monoxide or external reductant is required, photochemical synthesis may prove to be useful in material chemistry and applicable to the extractive metallurgy of nickel, as well as its refining and recycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.