BACKGROUND Carbamazepine causes various forms of hypersensitivity reactions, ranging from maculopapular exanthema to severe blistering reactions. The HLA-B★1502 allele has been shown to be strongly correlated with carbamazepine-induced Stevens–Johnson syndrome and toxic epidermal necrolysis (SJS–TEN) in the Han Chinese and other Asian populations but not in European populations. METHODS We performed a genomewide association study of samples obtained from 22 subjects with carbamazepine-induced hypersensitivity syndrome, 43 subjects with carbamazepine-induced maculopapular exanthema, and 3987 control subjects, all of European descent. We tested for an association between disease and HLA alleles through proxy single-nucleotide polymorphisms and imputation, confirming associations by high-resolution sequence-based HLA typing. We replicated the associations in samples from 145 subjects with carbamazepine-induced hypersensitivity reactions. RESULTS The HLA-A★3101 allele, which has a prevalence of 2 to 5% in Northern European populations, was significantly associated with the hypersensitivity syndrome (P = 3.5×10−8). An independent genomewide association study of samples from subjects with maculopapular exanthema also showed an association with the HLA-A★3101 allele (P = 1.1×10−6). Follow-up genotyping confirmed the variant as a risk factor for the hypersensitivity syndrome (odds ratio, 12.41; 95% confidence interval [CI], 1.27 to 121.03), maculopapular exanthema (odds ratio, 8.33; 95% CI, 3.59 to 19.36), and SJS–TEN (odds ratio, 25.93; 95% CI, 4.93 to 116.18). CONCLUSIONS The presence of the HLA-A★3101 allele was associated with carbamazepine-induced hypersensitivity reactions among subjects of Northern European ancestry. The presence of the allele increased the risk from 5.0% to 26.0%, whereas its absence reduced the risk from 5.0% to 3.8%. (Funded by the U.K. Department of Health and others.)
Antiseizure drugs (ASDs) prevent the occurrence of seizures; there is no evidence that they have disease-modifying properties. In the more than 160 years that orally administered ASDs have been available for epilepsy therapy, most agents entering clinical practice were either discovered serendipitously or with the use of animal seizure models. The ASDs originating from these approaches act on brain excitability mechanisms to interfere with the generation and spread of epileptic hyperexcitability, but they do not address the specific defects that are pathogenic in the epilepsies for which they are prescribed, which in most cases are not well understood. There are four broad classes of such ASD mechanisms: (1) modulation of voltage-gated sodium channels (e.g. phenytoin, carbamazepine, lamotrigine), voltage-gated calcium channels (e.g. ethosuximide), and voltage-gated potassium channels [e.g. retigabine (ezogabine)]; (2) enhancement of GABA-mediated inhibitory neurotransmission (e.g. benzodiazepines, tiagabine, vigabatrin); (3) attenuation of glutamate-mediated excitatory neurotransmission (e.g. perampanel); and (4) modulation of neurotransmitter release via a presynaptic action (e.g. levetiracetam, brivaracetam, gabapentin, pregabalin). In the past two decades there has been great progress in identifying the pathophysiological mechanisms of many genetic epilepsies. Given this new understanding, attempts are being made to engineer specific small molecule, antisense and gene therapies that functionally reverse or structurally correct pathogenic defects in epilepsy syndromes. In the near future, these new therapies will begin a paradigm shift in the treatment of some rare genetic epilepsy syndromes, but targeted therapies will remain elusive for the vast majority of epilepsies until their causes are identified.
Summary Purpose Autoantibodies to specific neurologic proteins are associated with subacute onset encephalopathies, which often present with seizures that are poorly controlled by conventional antiepileptic drugs (AEDs). Previous cross‐sectional studies have found specific neurologic antibodies in a small proportion of people with established epilepsy, but these investigations have seldom included patients with recent diagnosis. Methods We screened two large epilepsy cohorts to investigate the prevalence of multiple autoantibodies in adult patients with either established or newly diagnosed, untreated epilepsy. Key Findings Eleven percent of patients had antibodies to one or more antigen: voltage‐gated potassium channel (VGKC) complex proteins (5%), glycine receptors (3%), and glutamic acid decarboxylase (GAD) and N‐methyl‐d‐aspartate (NMDA) receptors (1.7% each). There was no difference in the prevalence of antibodies, individually or collectively, between patients with established and newly diagnosed epilepsy or with generalized or focal epilepsy. There was, however, a significantly higher prevalence of positive antibody titers in patients with focal epilepsy of unknown cause than in those with structural/metabolic focal epilepsy (14.8% vs. 6.3%; p < 0.02). Newly diagnosed antibody‐positive patients were less likely to achieve adequate seizure control with initial treatment than antibody‐negative patients, but this difference failed to reach statistical significance. Significance The presence of autoantibodies is equally common in newly diagnosed and established epilepsy, it is therefore unlikely to be an epiphenomenon of long‐standing refractory seizures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.