Noninvasive in vivo imaging technologies enable researchers and clinicians to detect the presence of disease and longitudinally study its progression. By revealing anatomical, functional, or molecular changes, imaging tools can provide a near real-time assessment of important biological events. At the preclinical research level, imaging plays an important role by allowing disease mechanisms and potential therapies to be evaluated noninvasively. Because functional and molecular changes often precede gross anatomical changes, there has been a significant amount of research exploring the ability of different imaging modalities to track these aspects of various diseases. Herein, we present a novel robotic preclinical contrast-enhanced ultrasound system and demonstrate its use in evaluating tumors in a rodent model. By leveraging recent advances in ultrasound, this system favorably compares with other modalities, as it can perform anatomical, functional, and molecular imaging and is cost-effective, portable, and high throughput, without using ionizing radiation. Furthermore, this system circumvents many of the limitations of conventional preclinical ultrasound systems, including a limited field-of-view, low throughput, and large user variability.
Non-invasive small-animal imaging technologies, such as optical imaging, magnetic resonance imaging and x-ray computed tomography, have enabled researchers to study normal biological phenomena or disease progression in their native conditions. However, existing smallanimal imaging technologies often lack either the penetration capability for interrogating deep tissues (e.g., optical microscopy), or the functional and molecular sensitivity for tracking specific activities (e.g., magnetic resonance imaging). To achieve functional and molecular imaging in deep tissues, we have developed an integrated photoacoustic, ultrasound and angiographic tomography (PAUSAT) system by seamlessly combining light and ultrasound in a non-invasive manner. PAUSAT can perform three imaging functions simultaneously with complementary contrast: high-frequency B-mode ultrasound imaging of tissue morphology, microbubbleenabled acoustic angiography of vasculature, and multi-spectral photoacoustic imaging of molecular probes. PAUSAT can provide three-dimensional (3D) multi-contrast images that are automatically co-registered, with high spatial resolutions at large depth. Using PAUSAT, we conducted proof-of-concept in vivo experiments on various small animal models: monitoring longitudinal development of placenta and embryo during mouse pregnancy, tracking biodistribution and metabolism of near-infrared organic dye on the whole-body scale, and detecting genetically-encoded breast tumor expressing photoswitchable phytochromes. These results have collectively demonstrated that PAUSAT has broad applicability in biomedical research, providing comprehensive structural, functional, and molecular imaging of small animal models.
A rare case of obturator hernia is presented in a patient with persistent small bowel obstruction. There was a paucity of specific signs and poor general health which caused a delay in diagnosis. Ultimately delayed films from a barium follow through showed barium-filled bowel in the region of the right obturator foramen: A computed tomography scan then confirmed the diagnosis by demonstrating the barium-filled small bowel herniating through the right obturator foramen. Other imaging modalities such as herniography, barium enemas and ultrasound have also been successfully employed to diagnose obturator hernias.
Non-invasive small-animal imaging technologies, such as optical imaging, magnetic resonance imaging and x-ray computed tomography, have enabled researchers to study normal biological phenomena or disease progression in their native conditions. However, existing small-animal imaging technologies often lack either the penetration capability for interrogating deep tissues (e.g., optical microscopy), or the functional and molecular sensitivity for tracking specific activities (e.g., magnetic resonance imaging). To achieve functional and molecular imaging in deep tissues, we have developed an integrated photoacoustic, ultrasound and angiographic tomography (PAUSAT) system by seamlessly combining light and ultrasound in a non-invasive manner. PAUSAT can perform three imaging functions simultaneously with complementary contrast: high-frequency B-mode ultrasound imaging of tissue morphology, microbubble-enabled acoustic angiography of vasculature, and multi-spectral photoacoustic imaging of molecular probes. PAUSAT can provide three-dimensional (3D) multi-contrast images that are automatically co-registered, with high spatial resolutions at large depth. Using PAUSAT, we conducted proof-of-concept in vivo experiments on various small animal models: monitoring longitudinal development of placenta and embryo during mouse pregnancy, tracking biodistribution and metabolism of near-infrared organic dye on the whole-body scale, and detecting genetically-encoded breast tumor expressing photoswitchable phytochromes. These results have collectively demonstrated that PAUSAT has broad applicability in biomedical research, providing comprehensive structural, functional, and molecular imaging of small animal models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.