The ability to tune the properties of graphene nanoribbons (GNRs) through modification of the nanoribbon's width and edge structure widens the potential applications of graphene in electronic devices. Although assembly of GNRs has been recently possible, current methods suffer from limited control of their atomic structure, or require the careful organization of precursors on atomically flat surfaces under ultra-high vacuum conditions. Here we demonstrate that a GNR can self-assemble from a random mixture of molecular precursors within a single-walled carbon nanotube, which ensures propagation of the nanoribbon in one dimension and determines its width. The sulphur-terminated dangling bonds of the GNR make these otherwise unstable nanoribbons thermodynamically viable over other forms of carbon. Electron microscopy reveals elliptical distortion of the nanotube, as well as helical twist and screw-like motion of the nanoribbon. These effects suggest novel ways of controlling the properties of these nanomaterials, such as the electronic band gap and the concentration of charge carriers.
In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.
Carbon nanotubes (CNTs) act as efficient nanoreactors, templating the assembly of sulfur-terminated graphene nanoribbons (S-GNRs) with different sizes, structures, and conformations. Spontaneous formation of nanoribbons from small sulfur-containing molecules is efficiently triggered by heat treatment or by an 80 keV electron beam. S-GNRs form readily in CNTs with internal diameters between 1 and 2 nm. Outside of this optimum range, nanotubes narrower than 1 nm do not have sufficient space to accommodate the 2D structure of S-GNRs, while nanotubes wider than 2 nm do not provide efficient confinement for unidirectional S-GNR growth, thus neither can support nanoribbon formation. Theoretical calculations show that the thermodynamic stability of nanoribbons is dependent on the S-GNR edge structure and, to a lesser extent, the width of the nanoribbon. For nanoribbons of similar widths, the polythiaperipolycene-type edges of zigzag S-GNRs are more stable than the polythiophene-type edges of armchair S-GNRs. Both the edge structure and the width define the electronic properties of S-GNRs which can vary widely from metallic to semiconductor to insulator. The encapsulated S-GNRs exhibit diverse dynamic behavior, including rotation, translation, and helical twisting inside the nanotube, which offers a mechanism for control of the electronic properties of the graphene nanoribbon via confinement at the nanoscale.
We have demonstrated that ubiquitous van der Waals forces are significant in controlling the interactions between nanoparticles and nanotubes. The adsorption of gold nanoparticles (AuNPs) on nanotubes (MWNTs) obeys a simple quadratic dependence on the nanotube surface area, regardless of the source of AuNPs and MWNTs. Changes in the geometric parameters of the components have pronounced effects on the affinity of nanoparticles for nanotubes, with larger, more polarizable nanostructures exhibiting stronger attractive interactions, the impact of which changes in the following order MWNT diameter > AuNP diameter > MWNT length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.