Current immunosuppressive therapies act on T lymphocytes by modulation of cytokine production, modulation of signaling pathways or by inhibition of the enzymes of nucleotide biosynthesis. We have identified a previously unknown series of immunomodulatory compounds that potently inhibit human and rat T lymphocyte proliferation in vitro and in vivo in immune-mediated animal models of disease, acting by a novel mechanism. Here we identify the target of these compounds, the monocarboxylate transporter MCT1 (SLC16A1), using a strategy of photoaffinity labeling and proteomic characterization. We show that inhibition of MCT1 during T lymphocyte activation results in selective and profound inhibition of the extremely rapid phase of T cell division essential for an effective immune response. MCT1 activity, however, is not required for many stages of lymphocyte activation, such as cytokine production, or for most normal physiological functions. By pursuing a chemistry-led target identification strategy, we have discovered that MCT1 is a previously unknown target for immunosuppressive therapy and have uncovered an unsuspected role for MCT1 in immune biology.
We demonstrate the secretion of human serum albumin into the culture supernatant from the yeast Saccharomyces cerevisiae. Studies with five KEX2 processed leader sequences, namely the S. cerevisiae alpha factor, the natural human serum albumin, the Kluyveromyces lactis killer, a natural human serum albumin/alpha factor fusion, and a Kluyveromyces lactis killer/alpha factor fusion leader, are described. We show that the leader sequence used to direct secretion influences the quantity and quality of the secreted product. In designing secretion systems for heterologous proteins, one aims to maximise both the yield and fidelity of the product. Our results indicate that the choice of leader sequence and its relationship to the structural protein under study are crucial to the success of this process.
Fungi appear to be unique in their requirement for a third soluble translation elongation factor. This factor, designated elongation factor 3 (EF-3), was first described in the yeast Saccharomyces cerevisiae and has subsequently been identified in a wide range of fungal species including Candida albicans and Schizosaccharomyces pombe. EF-3 exhibits ribosome-dependent ATPase and GTPase activities that are not intrinsic to the fungal ribosome, but which are essential for translation elongation. Recent studies on the structure of EF-3 from several fungal species have shown that it consists of a repeated domain, with each domain containing the expected putative ATP- and GTP-binding motifs. Overall, EF-3 shows striking amino acid similarity to members of the ATP-binding Cassette (ABC) family of membrane-associated transport proteins although EF-3 is not itself directly membrane-associated. Regions of the EF-3 polypeptide also show structural homology with other translation-associated factors including aminoacyl-tRNA synthetases and the Escherichia coli ribosomal protein S5. While the precise role of EF-3 in the translation elongation cycle remains to be defined, recent evidence suggests that it may be involved in optimizing accuracy during mRNA decoding at the ribosomal A site. Furthermore, the essential nature of EF-3 with respect to the fungal cell indicates that it may be an effective antifungal target. Its apparently ubiquitous occurrence throughout the fungal kingdom also suggests that it may be a useful fungal taxonomic marker.
We describe a system that facilitates the selection of host mutants that overproduce a range of secreted and internally produced heterologous proteins in Saccharomyces cerevisiae. These mutants were initially selected for their ability to oversecrete recombinant human albumin (rHA), as detected by a direct visual assay that relies upon antibody precipitation in solid media. Yeast strains that were able to synthesize and secrete increased levels of rHA also produced elevated levels of internally expressed proteins including alpha 1-antitrypsin Pittsburgh variant and plasminogen activator inhibitor type 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.