MicroRNAs are f22-nucleotide sequences thought to interact with multiple mRNAs resulting in either translational repression or degradation. We previously reported that several microRNAs had variable expression in mammalian cell lines, and we examined one, miR-200c, in more detail. A combination of bioinformatics and quantitative reverse transcription-PCR was used to identify potential targets and revealed that the zinc finger transcription factor transcription factor 8 (TCF8; also termed ZEB1, DEF1, Nil-2-A) had inversely proportional expression levels to miR-200c. Knockout experiments using anti-microRNA oligonucleotides increased TCF8 levels but with nonspecific effects. Therefore, to investigate target predictions, we overexpressed miR-200c in select cells lines. Ordinarily, the expression level of miR-200c in nonsmall-cell lung cancer A549 cells is low in contrast to normal human bronchial epithelial cells. Stable overexpression of miR-200c in A549 cells results in a loss of TCF8, an increase in expression of its regulatory target, E-cadherin, and altered cell morphology. In MCF7 (estrogen receptor-positive breast cancer) cells, there is endogenous expression of miR-200c and E-cadherin but TCF8 is absent. Conversely, MDA-MB-231 (estrogen receptor-negative) cells lack detectable miR-200c and E-cadherin (the latter reportedly due to promoter region methylation) but express TCF8. The ectopic expression of miR-200c in this cell line also reduced levels of TCF8, restored E-cadherin expression, and altered cell morphology. Because the down-regulation of E-cadherin is a crucial event in epithelial-to-mesenchymal transition, loss of miR-200c expression could play a significant role in the initiation of an invasive phenotype, and, equally, miR-200c overexpression holds potential for its reversal. [Cancer Res 2007;67(17):7972-6]
An increasing number of human genetic disorders are associated with the expansion of trinucleotide repeats. The majority of these diseases are associated with CAG/CTG expansions, including Huntington's disease, myotonic dystrophy and many of the spinocerebellar ataxias. Recently, two new expanded CAG/CTG repeats have been identified that are not associated with a phenotype. Expanded alleles at all of these loci are unstable, with frequent length changes during intergenerational transmission. However, variation in the relative levels of instability, and the size and direction of the length change mutations observed, between the CAG/CTG loci is apparent. We have quantified these differences, taking into account effects of progenitor allele length, by calculating the relative expandability of each repeat. Since the repeat motifs are the same, these differences must be a result of flanking sequence modifiers. We present data that indicate a strong correlation between the relative expandability of these repeats and the flanking GC content. Moreover, we demonstrate that the most expandable loci are all located within CpG islands. These data provide the first insights into the molecular bases of cis -acting flanking sequences modifying the relative mutability of dispersed expanded human triplet repeats.
Myotonic dystrophy type 1 is an autosomal dominant disorder associated with the expansion of a CTG repeat in the 3' untranslated region (UTR) of the DMPK gene. Recent data suggest that pathogenesis is predominantly mediated by a gain of function of the mutant transcript. In patients, these expanded CUG repeat-containing transcripts are sequestered into ribonuclear foci that also contain the muscleblind-like proteins. To provide further insights into muscleblind function and the pathogenesis of myotonic dystrophy, we generated Drosophila incorporating CTG repeats in the 3'-UTR of a reporter gene. As in patients, expanded CUG repeats form discrete ribonuclear foci in Drosophila muscle cells that co-localize with muscleblind. Unexpectedly, however, foci are not observed in all cell types and muscleblind is neither necessary nor sufficient for their formation. The foci are dynamic transient structures with short half-lifes that do not co-localize with the proteasome, suggesting they are unlikely to contain mis-folded proteins. However, they do co-localize with non-A, the human orthologs of which are implicated in both RNA splicing and attachment of dsRNA to the nuclear matrix. Muscleblind is also revealed as having a previously unrecognized role in stabilizing CUG transcripts. Most interestingly, Drosophila expressing (CUG)162 repeats has no detectable pathological phenotype suggesting that in contrast to expanded polyglutamine-containing proteins, neither the expanded CUG repeat RNA nor the ribonuclear foci are directly toxic.
Using an anchored oligo(dT) based RT-PCR approach we quantified endogenous expression of ten microRNAs in six cell lines. This identified a miRNA, miR-200c, with variable expression, ranging from undetectable in MDA-MB-231 and HT1080 to highly expressed in MCF7. The variable expression provided a model system to investigate endogenous interactions between miRNAs and their computationally predicted targets. As the expression level of the predicted mRNA targets and miR-200c in these lines should have an inverse relationship if cleavage or degradation results from the interaction. To select targets for analysis we used Affymetrix expression data and computational prediction programs. Affymetrix data indicated approximately 3500 candidate mRNAs, absent in MCF7 and present in MDA-MB-231 or HT1080. These targets were cross-referenced against approximately 600 computationally predicted miR-200c targets, identifying twenty potential mRNAs. Expression analysis by qRT-PCR of these targets and an additional ten mRNAs (selected using the prediction program ranking alone) revealed four mRNAs, BIN1, TCF8, RND3 and LHFP with an inverse relationship to miR-200c. Of the remainder, the majority did not appear to be degraded (and may be translational targets) or were undetectable in the cell lines examined. Finally, inhibition of miR-200c using an anti-miRNA 2'-0-Methyl oligonucleotide (AMO) resulted in an increase in expression of one of the targets, the transcription factor TCF8. These results indicate that a single miRNA could directly affect the mRNA levels of an important transcription factor, albeit in a manner specific to cell lines. Further investigation is required to confirm this in vivo and determine any translational effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.