Using pharmacological tools, a role for opioid receptors in the regulation of food intake has been documented. However, the involvement of specific receptor subtypes remains questionable, and little information is available regarding a role for opioid receptors in energy metabolism. Using adult male mice lacking the -opioid receptor (MOR) gene (MOR ؊/؊ ), we show that the MOR is not essential for the maintenance of normal levels of ad libitum food intake but does modulate the efficiency of energy storage during high-fat diets through the regulation of energy partitioning. When fed a regular diet, MOR ؊/؊ mice displayed only subtle alterations in energy homeostasis, suggesting a relative overuse of fat as a fuel source in the fed state. When fed a high-fat diet, MOR ؊/؊ mice were resistant to obesity and impaired glucose tolerance, despite having similar energy intake to wild-type mice. This resistance to obesity was associated with a strong induction of the expression of key mitochondrial enzymes involved in fatty acid oxidation within skeletal muscle. This metabolic role of the MOR, which is consistent with the properties of a "thrifty gene," suggests that the MOR pathway is a potential target for pharmacological intervention in the treatment of obesity associated with the intake of fatty diets. Diabetes 54: 3510 -3516, 2005 T he endogenous opioid system encompasses cloned receptor populations (, ␦, and ) and ligands (-endorphin, the enkephalins, and the dynorphins). Extensive work indicates that the opioid system plays a role in the regulation of appetite. Opioid receptors and peptides are expressed in sites of the central nervous system that play a role in regulating feeding behavior, and pharmacological experiments using opioid receptor ligands show that agonists promote eating and antagonists decrease food intake, at least in the short term (1-3). Numerous pharmacological studies indicate that opioids also play a role in modulating the rewarding effects of food (3-5). In contrast, little information suggests that opioids have a role in energy metabolism (6 -8).The need to establish the specific role of the opioid receptors in energy homeostasis has led to studies using putative specific opioid receptor ligands or, more recently, antisense probes directed against specific exons of opioid receptor genes (3,9). Pharmacological studies suggest that the and pathways are part of an interconnected brain network and participate in the orexigenic effect of several peptides that regulate food intake (10 -13). However, the interpretation of these data is complicated by our poor knowledge of the in vivo selectivity of ligand-receptor interactions that have been established in vitro (9,14).Recent studies conducted in mutant mice null for the opioid receptors have complemented pharmacological approaches and clarified the role of each receptor in nociception, anxiety, and drug abuse (14). To further define the role of the -opioid receptor (MOR) pathway in energy homeostasis, we characterized mice lacking the MOR gene ...
ibuprofen and indomethacin have similar efficacy in patent ductus arteriosus closure, but preterm infants treated with ibuprofen experience lower serum creatinine values, higher urine output, and less undesirable decreased organ blood flow and vasoconstrictive adverse effects.
Mutations of the survival motor neuron (SMN) gene in spinal muscular atrophy (SMA) lead to anterior horn cell death. The cause is unknown, but motor neurons depend substantially on mitochondrial oxidative phosphorylation (OxPhos) for normal function. Therefore, mitochondrial parameters were analyzed in an SMA cell culture model using small interfering RNA (siRNA) transfection that decreased Smn expression in NSC-34 cells to disease levels. Smn siRNA knock-down resulted in 35% and 66% reduced Smn protein levels 48 and 72 hr posttransfection, respectively. ATP levels were reduced by 14% and 26% at 48 and 72 hr posttransfection, respectively, suggesting decreased ATP production or increased energy demand in neural cells. Smn knock-down resulted in increased mitochondrial membrane potential and increased free radical production. Changes in activity of cytochrome c oxidase (CcO), a key OxPhos component, were observed at 72 hr with a 26% increase in oxygen consumption. This suggests a compensatory activation of the aerobic pathway, resulting in increased mitochondrial membrane potentials, a condition known to lead to the observed increase in free radical production. Further testing suggested that changes in ATP at 24 hr precede observable indices of cell injury at 48 hr. We propose that energy paucity and increased mitochondrial free radical production lead to accumulated cell damage and eventual cell death in Smn-depleted neural cells. Mitochondrial dysfunction may therefore be important in SMA pathology and may represent a new therapeutic target.
Recent advances in the biology of stem cells has resulted in signifi cant interest in the development of normal epithelial cell lines from the intestinal mucosa, both to exploit the therapeutic potential of stem cells in tissue regeneration and to develop treatment models of degenerative disorders of the digestive tract. However, the diffi culty of propagating cell lines of normal intestinal epithelium has impeded research into the molecular mechanisms underlying differentiation of stem/progenitor cells into the various intestinal lineages. Several short-term organ/organoid and epithelial cell culture models have been described. There is a dearth of long-term epithelial and/or stem cell cultures of intestine. With an expanding role of stem cells in the treatment of degenerative disorders, there is a critical need for additional efforts to develop in vitro models of stem/progenitor epithelial cells of intestine. The objective of this review is to recapitulate the current status of technologies and knowledge for in vitro propagation of intestinal epithelial cells, markers of the intestinal stem cells, and gene and protein expression profi les of the intestinal cellular differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.