There is epidemiologic evidence that obesity increases the risk of cancers. Several underlying mechanisms, including inflammation and insulin resistance, are proposed. However, the driving mechanisms in pancreatic cancer are poorly understood. The goal of the present study was to develop a model of diet-induced obesity and pancreatic cancer development in a state-of-the-art mouse model, which resembles important clinical features of human obesity, e.g. weight gain and metabolic disturbances.
Offspring of Pdx-1-Cre and LSL-KrasG12D mice were allocated to either a diet high in fats and calories (HFCD; ~4,535 kcal/kg; 40% of calories from fats) or control diet (CD; ~3,725 kcal/kg; 12% of calories from fats) for 3 months. Compared to control animals, mice fed the HFCD significantly gained more weight and developed hyperinsulinemia, hyperglycemia, hyperleptinemia, and elevated levels of IGF-1. The pancreas of HFCD-fed animals showed robust signs of inflammation with increased numbers of infiltrating inflammatory cells (macrophages and T-cells), elevated levels of several cytokines and chemokines, increased stromal fibrosis, and more advanced PanIN lesions.
Our results demonstrate that a diet high in fats and calories leads to obesity and metabolic disturbances similar to humans and accelerates early pancreatic neoplasia in the conditional KrasG12D mouse model. This model and findings will provide the basis for more robust studies attempting to unravel the mechanisms underlying the cancer-promoting properties of obesity as well as to evaluate dietary- and chemo-preventive strategies targeting obesity-associated pancreatic cancer development.
Introduction-The Joint Commission Surgical Care Improvement Project (SCIP) includes performance measures aimed at reducing surgical site infections (SSI). One measure defines approved perioperative antibiotics for general operative procedures. However, there may be a subset of procedures not adequately covered with the use of approved antibiotics. We hypothesized that piperacillin-tazobactam is a more appropriate perioperative antibiotic for pancreaticoduodenectomy (PD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.