Starpharma focuses on the use of dendrimers as drugs in their own right, in contrast to dendrimers as drug delivery vehicles or diagnostics. This contextual review describes how dendrimers offer a unique platform for exploring chemical diversity on the nanoscale and how the production of dendrimer libraries covering a diverse array of macromolecular structures can be used in drug discovery and development. Using Starpharma's work on the prevention of HIV and sexually transmitted infections (STIs) through the development of microbicide candidates as an example, the process from which SPL7013 emerged as a development candidate is described. Following a range of preclinical studies, Starpharma submitted an investigational new drug application (IND) for SPL7013 gel (VivaGel) to the United States Food and Drug Administration (FDA) in June 2003, the first such submission for a dendrimer-based drug. The first clinical trial under this IND was completed in 2004.
An effective response to the ongoing coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will involve a range of complementary preventive modalities. The current studies were conducted to evaluate the in vitro SARS-CoV-2 antiviral and virucidal (irreversible) activity of astodrimer sodium, a dendrimer with broad spectrum antimicrobial activity, including against enveloped viruses in in vitro and in vivo models, that is marketed for antiviral and antibacterial applications. We report that astodrimer sodium inhibits replication of SARS-CoV-2 in Vero E6 and Calu-3 cells, with 50% effective concentrations (EC 50 ) for i) reducing virus-induced cytopathic effect of 0.002 to 0.012 mg/mL in Vero E6 cells, and ii) infectious virus release by plaque assay of 0.019 to 0.032 mg/mL in Vero E6 cells and 0.031 to 0.037 mg/mL in Calu-3 cells. The selectivity index (SI) in these assays was as high as 2197. Astodrimer sodium was also virucidal, irreversibly reducing SARS-CoV-2 infectivity by >99.9% (>3 log 10 ) within 1 minute of exposure, and up to >99.999% (>5 log 10 ) shown at astodrimer sodium concentrations of 10 to 30 mg/mL in Vero E6 and Calu-3 cell lines. Astodrimer sodium also inhibited infection in a primary human airway epithelial cell line. The data were similar for all investigations and were consistent with the potent antiviral and virucidal activity of astodrimer sodium being due to irreversible inhibition of virus-host cell interactions, as previously demonstrated for other viruses. Further studies will confirm if astodrimer sodium binds to SARS-CoV-2 spike protein and physically blocks initial attachment of the virus to the host cell. Given the in vitro effectiveness and significantly high SI, astodrimer sodium warrants further investigation for potential as a topically administered agent for SARS-CoV-2 therapeutic applications.
Strategies to combat COVID-19 require multiple ways to protect vulnerable people from infection. SARS-CoV-2 is an airborne pathogen and the nasal cavity is a primary target of infection. The K18-hACE2 mouse model was used to investigate the anti-SARS-CoV-2 efficacy of astodrimer sodium formulated in a mucoadhesive nasal spray. Animals received astodrimer sodium 1% nasal spray or PBS intranasally, or intranasally and intratracheally, for 7 days, and they were infected intranasally with SARS-CoV-2 after the first product administration on Day 0. Another group was infected intranasally with SARS-CoV-2 that had been pre-incubated with astodrimer sodium 1% nasal spray or PBS for 60 min before the neutralisation of test product activity. Astodrimer sodium 1% significantly reduced the viral genome copies (>99.9%) and the infectious virus (~95%) in the lung and trachea vs. PBS. The pre-incubation of SARS-CoV-2 with astodrimer sodium 1% resulted in a significant reduction in the viral genome copies (>99.9%) and the infectious virus (>99%) in the lung and trachea, and the infectious virus was not detected in the brain or liver. Astodrimer sodium 1% resulted in a significant reduction of viral genome copies in nasal secretions vs. PBS on Day 7 post-infection. A reduction in the viral shedding from the nasal cavity may result in lower virus transmission rates. Viraemia was low or undetectable in animals treated with astodrimer sodium 1% or infected with treated virus, correlating with the lack of detectable viral replication in the liver. Similarly, low virus replication in the nasal cavity after treatment with astodrimer sodium 1% potentially protected the brain from infection. Astodrimer sodium 1% significantly reduced the pro-inflammatory cytokines IL-6, IL-1α, IL-1β, TNFα and TGFβ and the chemokine MCP-1 in the serum, lung and trachea vs. PBS. Astodrimer sodium 1% nasal spray blocked or reduced SARS-CoV-2 replication and its sequelae in K18-hACE2 mice. These data indicate a potential role for the product in preventing SARS-CoV-2 infection or for reducing the severity of COVID-19.
An effective response to the ongoing coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will involve a range of complementary preventive modalities. The current studies were conducted to evaluate the in vitro SARS-CoV-2 antiviral and virucidal activity of astodrimer sodium, a dendrimer with broad spectrum antimicrobial activity, including against enveloped viruses in in vitro and in vivo models, that is marketed for antiviral and antibacterial applications. We report that astodrimer sodium inhibits replication of SARS-CoV-2 in Vero E6 and Calu-3 cells, with 50% effective concentrations (EC50) for i) reducing virus-induced cytopathic effect of 0.002 to 0.012 mg/mL in Vero E6 cells, and ii) infectious virus release by plaque assay of 0.019 to 0.032 mg/mL in Vero E6 cells and 0.031 to 0.037 mg/mL in Calu-3 cells. The selectivity index (SI) in these assays was as high as 2197. Astodrimer sodium was also virucidal, reducing SARS-CoV-2 infectivity by >99.9% (>3 log10) within 1 minute of exposure, and up to >99.999% (>5 log10) shown at astodrimer sodium concentrations of 10 to 30 mg/mL in Vero E6 and Calu-3 cell lines. Astodrimer sodium also inhibited infection in a primary human airway epithelial cell line. The data were similar for all investigations and were consistent with the potent antiviral and virucidal activity of astodrimer sodium being due to inhibition of virus-host cell interactions, as previously demonstrated for other viruses. Further studies will confirm if astodrimer sodium binds to SARS-CoV-2 spike protein and physically blocks initial attachment of the virus to the host cell. Given the in vitro effectiveness and significantly high SI, astodrimer sodium warrants further investigation for potential as a nasally administered or inhaled antiviral agent for SARS-CoV-2 prevention and treatment applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.