The Gemini Multiobject Spectrograph (GMOS) installed on the Gemini-North telescope has a facility for integral field spectroscopy over the wavelength range 0.4-1.0 mm. GMOS is converted to this mode by the remote insertion of an integral field unit (IFU) into the beam in place of the masks used for the multiobject mode. With the IFU deployed, integral field spectroscopy is available over a fully filled contiguous field of with a sampling of 0Љ .2. A separate field of half the area, but otherwise identical, is also provided to 5 # 7 improve background subtraction. The IFU contains 1500 lenslet-coupled fibers and is the first facility of any type for integral field spectroscopy employed on an 8-10 m telescope. We describe the design, construction, and testing of the GMOS IFU and present measurements of the throughput both in the laboratory and at the telescope. We compare these with a theoretical prediction made before construction started. All are in good agreement with each other, with the on-telescope throughput exceeding 60% (averaged over wavelength). A second paper will verify the scientific performance by comparison with existing one-and two-dimensional data sets.
Fibre Multi-Object Spectrograph (FMOS) is the first near-infrared instrument with a wide field of view capable of acquiring spectra simultaneously from up to 400 objects. It has been developed as a common-use instrument for the F$/$2 prime-focus of the Subaru Telescope. The field coverage of 30$^\prime$ diameter is achieved using a new 3-element corrector optimized in the near-infrared (0.9–1.8$\ \mu$m) wavelength range. Due to limited space at the prime-focus, we have had to develop a novel fibre positioner, called “Echidna”, together with two OH-airglow suppressed spectrographs. FMOS consists of three subsystems: the prime focus unit for IR, the fibre positioning system/connector units, and the two spectrographs. After full systems integration, FMOS was installed on the telescope in late 2007. Many aspects of the performance were checked through various test and engineering observations. In this paper, we present the optical and mechanical components of FMOS, and show the results of our on-sky engineering observations to date.
Fibre modal noise occurs in high spectral resolution, high signal‐to‐noise ratio applications. It imposes fundamental limits on the photometric accuracy of state‐of‐the‐art fibre‐spectrograph systems. In order to maximize the performance of current and future instruments it is therefore essential to predict fibre modal noise. To attain a predictive model we are using a dual approach, bringing theoretical assumptions in line with the experimental data obtained using a test‐bench spectrograph. We show that the task of noise prediction can be reduced to determining the visibility of the modal pattern which can be measured at the detector plane. Subsequently, the visibility dependence of essential parameters is presented. This work will soon provide a basis for prediction of modal noise limitations in fibre‐coupled spectrograph designs.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ∼1.6−2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.