Background The antibacterial, anti-inflammatory, and antiviral properties of azithromycin suggest therapeutic potential against COVID-19. Randomised data in mild-to-moderate disease are not available. We assessed whether azithromycin is effective in reducing hospital admission in patients with mild-to-moderate COVID-19. MethodsThis prospective, open-label, randomised superiority trial was done at 19 hospitals in the UK. We enrolled adults aged at least 18 years presenting to hospitals with clinically diagnosed, highly probable or confirmed COVID-19 infection, with fewer than 14 days of symptoms, who were considered suitable for initial ambulatory management. Patients were randomly assigned (1:1) to azithromycin (500 mg once daily orally for 14 days) plus standard care or to standard care alone. The primary outcome was death or hospital admission from any cause over the 28 days from randomisation. The primary and safety outcomes were assessed according to the intention-to-treat principle. This trial is registered at ClinicalTrials.gov (NCT04381962) and recruitment is closed.Findings 298 participants were enrolled from June 3, 2020, to Jan 29, 2021. Three participants withdrew consent and requested removal of all data, and three further participants withdrew consent after randomisation, thus, the primary outcome was assessed in 292 participants (145 in the azithromycin group and 147 in the standard care group). The mean age of the participants was 45•9 years (SD 14•9). 15 (10%) participants in the azithromycin group and 17 (12%) in the standard care group were admitted to hospital or died during the study (adjusted OR 0•91 [95% CI 0•43-1•92], p=0•80). No serious adverse events were reported.Interpretation In patients with mild-to-moderate COVID-19 managed without hospital admission, adding azithromycin to standard care treatment did not reduce the risk of subsequent hospital admission or death. Our findings do not support the use of azithromycin in patients with mild-to-moderate COVID-19.
In a civil aero-engine transmission system a number of bearings are used for shaft location and load support. A bespoke experimental test facility in the University of Nottingham’s Gas Turbine and Transmissions Research Centre (G2TRC) was created to investigate oil shedding from a location bearing. An engine representative ball bearing was installed in the rig and under-race lubrication was supplied via under-race feed to three locations under the inner race and cage. The oil was supplied in an engine representative manner but the delivery system was modified to provide circumferentially even flow. An electromagnetic load system was designed and implemented to allow engine representative axial loads between 5 and 35 kN to be applied to the bearing. In this phase of testing the rig was operated at shaft speeds between 1,000 rpm and 7,000 rpm for a range of oil flow rates and low and high load conditions. The rig was designed with good visual access and high speed imaging was used to investigate film formation and movement on surfaces close to the bearing. This paper presents images and qualitative observations of thin film formed on the static surfaces forming the outer-periphery of the bearing compartment as well as the gap between orbiting cage and static outer race. Quantitative film thickness was obtained at two circumferential locations (90° and 270° from top dead centre) and three axial locations, through sophisticated analysis of the high speed images. The effect on film thickness of the varied parameters rotational speed, axial load and oil feed input flow rate are presented in this paper. It was observed that for all axial planes of measurement in both co-current and counter-current regions film thickness decreases with increase in shaft rotational speed. At 5,000 and 7,000 rpm film thicknesses are around 0.75 mm – 1 mm and are similar at 90° and 270°; at 3,000 rpm films tend to be somewhat thicker at around 1.5 mm – 2 mm and are thicker in the counter current region, particularly closer to the bearing. It is suggested that at higher shaft speeds interfacial shear dominates whereas at lower speed the effect of gravity in slowing the film in the counter-current region causes a measureable difference. It was further observed that increasing the input oil flow rate from 5.2 litres per minute to 7.3 litres per minute did not produce significant effect on film thickness. However, the increase of axial bearing load from 10 kN to 30 kN yielded thicker films at the location above the cage. In all cases there was waviness on the film surface at the bearing outer periphery; imaging was not sufficient to see if the film surface close to the bearing is wavy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.