The inositol trisphosphate receptor () is one of the most important cellular components responsible for oscillations in the cytoplasmic calcium concentration. Over the past decade, two major questions about the have arisen. Firstly, how best should the be modeled? In other words, what fundamental properties of the allow it to perform its function, and what are their quantitative properties? Secondly, although calcium oscillations are caused by the stochastic opening and closing of small numbers of , is it possible for a deterministic model to be a reliable predictor of calcium behavior? Here, we answer these two questions, using airway smooth muscle cells (ASMC) as a specific example. Firstly, we show that periodic calcium waves in ASMC, as well as the statistics of calcium puffs in other cell types, can be quantitatively reproduced by a two-state model of the , and thus the behavior of the is essentially determined by its modal structure. The structure within each mode is irrelevant for function. Secondly, we show that, although calcium waves in ASMC are generated by a stochastic mechanism, stochasticity is not essential for a qualitative prediction of how oscillation frequency depends on model parameters, and thus deterministic models demonstrate the same level of predictive capability as do stochastic models. We conclude that, firstly, calcium dynamics can be accurately modeled using simplified models, and, secondly, to obtain qualitative predictions of how oscillation frequency depends on parameters it is sufficient to use a deterministic model.
We present a multiscale, spatially-distributed model of lung and airway behaviour with the goal of furthering understanding of airway hyper-responsiveness and asthma. The model provides an initial computational framework for linking events at the cellular and molecular levels, such as Ca2+ and crossbridge dynamics, to events at the level of the entire organ. At the organ level, parenchymal tissue is modelled using a continuum approach as a compressible, hyperelastic material in three dimensions, with expansion and recoil of lung tissue due to tidal breathing. The governing equations of finite elasticity deformation are solved using a finite element method. The airway tree is embedded in this tissue, where each airway is modelled with its own airway wall, smooth muscle and surrounding parenchyma. The tissue model is then linked to models of the crossbridge mechanics and their control by Ca2+ dynamics, thus providing a link to molecular and cellular mechanisms in airway smooth muscle cells. By incorporating and coupling the models at these scales, we obtain a detailed, computational multiscale model incorporating important physiological phenomena associated with asthma.
Calcium puffs are local transient Ca(2+) releases from internal Ca(2+) stores such as the endoplasmic reticulum or the sarcoplasmic reticulum. Such release occurs through a cluster of inositol 1,4,5-trisphosphate receptors (IP3Rs). Based on the IP3R model (which is determined by fitting to stationary single-channel data) and nonstationary single-channel data, we construct a new IP3R model that includes time-dependent rates of mode switches. A point-source model of Ca(2+) puffs is then constructed based on the new IP3R model and is solved by a hybrid Gillespie method with adaptive timing. Model results show that a relatively slow recovery of an IP3R from Ca(2+) inhibition is necessary to reproduce most of the experimental outcomes, especially the nonexponential interpuff interval distributions. The number of receptors in a cluster could be severely underestimated when the recovery is sufficiently slow. Furthermore, we find that, as the number of IP3Rs increases, the average duration of puffs initially increases but then becomes saturated, whereas the average decay time keeps increasing linearly. This gives rise to the observed asymmetric puff shape.
Bronchial thermoplasty is a relatively new but seemingly effective treatment in subjects with asthma who do not respond to conventional therapy. Although the favored mechanism is ablation of the airway smooth muscle layer, because bronchial thermoplasty treats only a small number of central airways, there is ongoing debate regarding its precise method of action. Our aim in the present study was to elucidate the underlying method of action behind bronchial thermoplasty. We employed a combination of extensive human lung specimens and novel computational methods. Whole left lungs were acquired from the Prairie Provinces Fatal Asthma Study. Subjects were classified as control (n = 31), nonfatal asthma (n = 32), or fatal asthma (n = 25). Simulated lungs for each group were constructed stochastically, and flow distributions and functional indicators (e.g., resistance) were quantified both before and after a 75% reduction in airway smooth muscle in the "thermoplasty-treated" airways. Bronchial thermoplasty triggered global redistribution of clustered flow patterns wherein structural changes to the treated central airways led to a reopening cascade in the small airways and significant improvement in lung function via reduced spatial heterogeneity of flow patterns. This mechanism accounted for progressively greater efficacy of thermoplasty with both severity of asthma and degree of muscle activation, broadly consistent with existing clinical findings. We report a probable mechanism of action for bronchial thermoplasty: alteration of lung-wide flow patterns in response to structural alteration of the treated central airways. This insight could lead to improved therapy via patient-specific, tailored versions of the treatment-as well as to implications for more conventional asthma therapies.
Epidemiological studies report that overweight or obese asthmatic subjects have more severe disease than those of a healthy weight. We postulated that accumulation of adipose tissue within the airway wall may occur in overweight patients and contribute to airway pathology. Our aim was to determine the relationship between adipose tissue within the airway wall and body mass index (BMI) in individuals with and without asthma.Transverse airway sections were sampled in a stratified manner from post mortem lungs of control subjects (n=15) and cases of nonfatal (n=21) and fatal (n=16) asthma. The relationship between airway adipose tissue, remodelling and inflammation was assessed. The areas of the airway wall and adipose tissue were estimated by point count and expressed as area per mm of basement membrane perimeter (Pbm). The number of eosinophils and neutrophils were expressed as area densities.BMI ranged from 15 to 45 kg·m−2 and was greater in nonfatal asthma cases (p<0.05). Adipose tissue was identified in the outer wall of large airways (Pbm >6 mm), but was rarely seen in small airways (Pbm <6 mm). Adipose tissue area correlated positively with eosinophils and neutrophils in fatal asthma (Pbm >12 mm, p<0.01), and with neutrophils in control subjects (Pbm >6 mm, p=0.04).These data show that adipose tissue is present within the airway wall and is related to BMI, wall thickness and the number of inflammatory cells. Therefore, the accumulation of airway adipose tissue in overweight individuals may contribute to airway pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.