As climate changes, many regions of the world are projected to experience more intense droughts, which can drive changes in plant community composition through a variety of mechanisms. During drought, community composition can respond directly to resource limitation, but biotic interactions modify the availability of these resources. Here, we develop the Community Response to Extreme Drought framework (CRED), which organizes the temporal progression of mechanisms and plantplant interactions that may lead to community changes during and after a drought. The CRED framework applies some principles of the stress gradient hypothesis (SGH), which proposes that the balance between competition and facilitation changes with increasing stress. The CRED framework suggests that net biotic interactions (NBI), the relative frequency and intensity of facilitative (+) and competitive (À) interactions between plants, will change temporally, becoming more positive under increasing drought stress and more negative as drought stress decreases. Furthermore, we suggest that rewetting rates affect the rate of resource amelioration, specifically water and nitrogen, altering productivity responses and the intensity and importance of NBI, all of which will influence droughtinduced compositional changes. System-specific variables and the intensity of drought influence the strength of these interactions, and ultimately the system's resistance and resilience to drought.
Most of the species studied in this paper have previously been placed in either Pleurothallis or Lepanthes. However, at one time or another, members of the group have also been placed in the genera Andinia, Brachycladium, Lueranthos, Masdevalliantha, Neooreophilus, Oreophilus, Penducella, Salpistele and Xenosia. Phylogenetic analyses of nuclear ITS and plastid matK sequences indicate that these species form a strongly supported clade that is only distantly related to Lepanthes and is distinct from Pleurothallis and Salpistele. Since this clade includes the type species of Andinia, A. dielsii, and it has taxonomic precedence over all other generic names belonging to this group, Andinia is re-circumscribed and expanded to include 72 species segregated into five subgenera: Aenigma, Andinia, Brachycladium, Masdevalliantha and Minuscula. The required taxonomic transfers are made herein. We hypothesize that convergent evolution towards a similar pollinator syndrome involving deceit pollination via pseudocopulation by Diptera resulted in a similar floral morphology between species of subgenus Brachycladium and species of Lepanthes; hence the prior placement of the species of subgenus Brachycladium in Lepanthes. Species of the re-circumscribed Andinia are confined exclusively to the Andes, ranging from about 1,200 to 3,800 m, from Colombia south to Bolivia, making the generic name very apt. Elevational distributions of the individual clades are discussed in relation to the possible evolutionary diversification of the most species-rich clade, subgenus Brachycladium.
Invasive shrubs in forest understories threaten biodiversity and forest regeneration in the eastern United States. Controlling these extensive monotypic shrub thickets is a protracted process that slows the restoration of degraded forest land. Invasive shrub removal can be accelerated by using forestry mulching heads, but evidence from the western United States indicates that mulching heads can promote exotic species establishment and mulch deposition can reduce native plant species abundance. We compared the effectiveness of the mulching head and the “cut-stump” method for controlling the invasive shrub Amur honeysuckle (Lonicera maackii), as well as their impacts on native plant community recovery, in mixed-hardwood forests of Indiana. After two growing seasons, mulching head treatment resulted in greater L. maackii regrowth and regeneration. The recovery of native plant abundance and diversity following shrub removal did not differ between the two methods. However, mulch deposition was associated with increased abundance of garlic mustard (Alliaria petiolata), an invasive forb. Increasing mulching head treatment depth reduced L. maackii regrowth, but additional study is needed to determine how it affects plant community responses. The mulching head is a promising technique for invasive shrub control and investigating tradeoffs between reducing landscape-scale propagule pressure and increased local establishment will further inform its utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.